Advertisement

A Serious Game for Training Balance Control over Different Types of Soil

  • Bob-Antoine J. Menelas
  • Martin J. D. Otis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7528)

Abstract

It is known that the type of the soil can affect balance. Here we report a serious game designed for training users at maintaining balance over five types of soil (broken stone, stone dust, sand, concrete and wood). By using an augmented shoe and proposed navigation metaphor, in this game, the user is invited to browse a maze while standing balance over the physical grounds. During the exploration, exercises targeting assessment of balance control are suggested. To insure the effectiveness of this training program, four exercises based on the Berg Balance Scale and the Tinetti Balance Assessment Tool are incorporated in the game.

Keywords

Balance Control Balance Training Berg Balance Scale Functional Reach Balance Board 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bamberg, S.J.M., Benbasat, A.Y., Scarborough, D.M., Krebs, D.E., Paradiso, J.A.: Gait analysis using a shoe-integrated wireless sensor system. IEEE Transactions on Information Technology in Biomedicine 12(4), 413–423 (2008)CrossRefGoogle Scholar
  2. 2.
    Burke, J.W., McNeill, M.D.J., Charles, D.K., Morrow, P.J., Crosbie, J.H., McDonough, S.M.: Optimising engagement for stroke rehabilitation using serious games. Visual Computer, 1–15 (2009)Google Scholar
  3. 3.
    Chang, J.T., Morton, S.C., Rubenstein, L.Z., Mojica, W.A., Maglione, M., Suttorp, M.J., Roth, E.A., Shekelle, P.G.: Interventions for the prevention of falls in older adults: systematic review and meta-analysis of randomised clinical trials. BMJ 328(7441), 680+ (2004), http://dx.doi.org/10.1136/bmj.328.7441.680, doi:10.1136/bmj.328.7441.680CrossRefGoogle Scholar
  4. 4.
    Clark, R.A., Pua, Y.-H., Fortin, K., Ritchie, C., Webster, K.E., Denehy, L., Bryant, A.L.: Validity of the microsoft kinect for assessment of postural control. Gait and Posture (2012)Google Scholar
  5. 5.
    Cumming, R.G., Salkeld, G., Thomas, M., Szonyi, G.: Prospective study of the impact of fear of falling on activities of daily living, sf-36 scores, and nursing home admission. Journals of Gerontology - Series A Biological Sciences and Medical Sciences 55(5), M299–M305 (2000)CrossRefGoogle Scholar
  6. 6.
    Eagle, D.J., Salama, S., Whitman, D., Evans, L.A., Ho, E., Olde, J.: Comparison of three instruments in predicting accidental falls in selected inpatients in a general teaching hospital. Journal of Gerontological Nursing 25(7), 40–45 (1999)Google Scholar
  7. 7.
    Edgar, S., Swyka, T., Fulk, G., Sazonov, E.: Wearable shoe-based device for rehabilitation of stroke patients. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3772–3775 (2010)Google Scholar
  8. 8.
    Esculier, J.F., Vaudrin, J., Beriault, P., Gagnon, K., Tremblay, L.: Home-based balance training programme using wii fit with balance board for parkinson’s disease: A pilot study. Journal of Rehabilitation Medicine 44(2), 144–150 (2012)CrossRefGoogle Scholar
  9. 9.
    Ganz, D.A., Bao, Y., Shekelle, P.G., Rubenstein, L.Z.: Will my patient fall? Journal of the American Medical Association 297(1), 77–86 (2007)CrossRefGoogle Scholar
  10. 10.
    Grosjean, A., Fabbri, E., Feldheim, E., Snoeck, T., Amand, M., Keuterickx, C., Balestra, C.: On the use of the wii fit in reducing falling risk factors and improving balance for the elderly. Kinesitherapie 10(107), 41–45 (2010)Google Scholar
  11. 11.
    Hendrich, A., Nyhuis, A., Kippenbrock, T., Soja, M.: Hospital falls: development of a predictive model for clinical practice. Applied Nursing Research 8(3), 129–139 (1995)CrossRefGoogle Scholar
  12. 12.
    Howe, T., Rochester, L., Neil, F., Skelton, D., Ballinger, C.: Exercise for improving balance in older people. Cochrane Database of Systematic Reviews (Online) CD00 4963(11), 1–152 (2011)Google Scholar
  13. 13.
    Kim, E.A.N., Mordiffi, S.Z., Bee, W.H., Devi, K.e., Evans, D.: Evaluation of three fall-risk assessment tools in an acute care setting. Journal of Advanced Nursing 60(4), 427–435 (2007)CrossRefGoogle Scholar
  14. 14.
    Lee, B.-C., Kim, J., Chen, S., Sienko, K.H.: Cell phone based balance trainer. Journal of Neuro Engineering and Rehabilitation, 10 (2012)Google Scholar
  15. 15.
    Lin, M.-R., Hwang, H.-F., Hu, M.-H., Wu, H.-D.I., Wang, Y.-W., Huang, F.-C.: Psychometric comparisons of the timed up and go, one-leg stand, functional reach, and tinetti balance measures in community-dwelling older people. Journal of the American Geriatrics Society 52(8), 1343–1348 (2004)CrossRefGoogle Scholar
  16. 16.
    Madureira, M.M., Takayama, L., Gallinaro, A.L., Caparbo, V.F., Costa, R.A., Pereira, R.M.R.: Balance training program is highly effective in improving functional status and reducing the risk of falls in elderly women with osteoporosis: a randomized controlled trial. Osteoporosis International 18(4), 419–425 (2007)CrossRefGoogle Scholar
  17. 17.
    Marigold, D.S., Patla, A.E.: Adapting locomotion to different surface compliances: Neuromuscular responses and changes in movement dynamics. Journal of Neurophysiology 94(3), 1733–1750 (2005)CrossRefGoogle Scholar
  18. 18.
    Means, K.M., Rodell, D.E., O’Sullivan, P.S.: Balance, mobility, and falls among community-dwelling elderly persons: effects of a rehabilitation exercise program. American Journal of Physical Medicine and Rehabilitation 84(4), 238–250 (2005)CrossRefGoogle Scholar
  19. 19.
    Ménélas, B., Picinalli, L., Katz, B.F.G., Bourdot, P.: Audio haptic feedbacks for an acquisition task in a multi-target context. In: 3DUI, pp. 51–54. IEEE (2010)Google Scholar
  20. 20.
    Nitz, J.C., Choy, N.L.: The efficacy of a specific balance-strategy training programme for preventing falls among older people: a pilot randomised controlled trial. Age Ageing 33(1), 52–58 (2004)CrossRefGoogle Scholar
  21. 21.
    Noshadi, H., Ahmadian, S., Hagopian, H., Woodbridge, J., Dabiri, F., Amini, N., Sarrafzadeh, M., Terrafranca, N.: Hermes: Mobile balance and instability assessment system. In: Proceedings of the 3rd International Conference on Bio-inpsired Systems and Signal Processing, pp. 264–270 (2010)Google Scholar
  22. 22.
    Otis, M.J.D., Mokhtari, M., Du Tremblay, C., De Rainville, F.M., Laurendeau, D., Gosselin, C.M.: Hybrid control with multi-contact interactions for 6dof haptic foot platform on a cable-driven locomotion interface. In: IEEE Int. Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems, pp. 161–168 (2008)Google Scholar
  23. 23.
    Tinetti, M.E.: Performance-orientated assessment of mobility problems in elderly patients. Journal of the American Geriatrics Society 34(2), 119–126 (1986)Google Scholar
  24. 24.
    Zhou, J., Fan, J.: Analysis of the effectiveness of morse fall scale and berg balance scale applied in the fall risk prediction for senile patients. Chinese Journal of Rehabilitation Medicine 27(2), 130–133 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bob-Antoine J. Menelas
    • 1
  • Martin J. D. Otis
    • 2
  1. 1.Department of Mathematics and Computer ScienceUniversity of Quebec at Chicoutimi (UQAC)Canada
  2. 2.Department of Applied Sciences, REPARTI CenterUniversity of Quebec at Chicoutimi (UQAC)Canada

Personalised recommendations