Skip to main content

Real Exchange Rate and Public Debt in a Two-Advanced-Country OLG Model

  • Chapter
  • First Online:
  • 1959 Accesses

Part of the book series: Springer Texts in Business and Economics ((STBE))

Abstract

The recent euro crisis has caused concerns both with respect to public-debt sustainability and the stability of exchange rates of highly indebted countries. This chapter investigates these concerns in a two-good, two-country OLG model of the world economy with country-specific saving rates to mimic also Asian economies. We find that the concerns with respect to debt-sustainability are warranted since limits for national debt levels do exist. The concerns regarding exchange-rate stability are not warranted since unilateral debt expansion does not impact the real exchange rate at all or the impacts are independent of the external balance of the debt-expanding country.

This chapter draws heavily on Farmer (International Advances of Economic Research 17, 45–65, 2011) and for the mathematical aspects on Farmer (Public-debt sustainability, exchange rates, and country-specific saving rates. In A. Bayar, C. Erbil & D. Ozdemir (Eds.), Proceedings of Ecomod 2010: International Conference on Economic Modeling, Brussels, 2010).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Before the outburst of the euro crisis Goyette (2009) and Wiedemer et al. (2009) uttered similar concerns with respect to the stability of the US-dollar.

  2. 2.

    Similarly, the hugely negative external balance of the United States of America (IMF 2006, 2008) did apparently not trigger a visible depreciation of the US-dollar.

  3. 3.

    In times of low and similar inflation rates among advanced countries nominal and real exchange rates evolve largely parallel.

  4. 4.

    CD production functions are defined as ‘similar’ if production elasticities (or, respectively, capital income shares) are internationally equal, while the scale parameter reflecting the technological level might differ across countries.

  5. 5.

    Henceforth all variables referring to Foreign are denoted by an asterisk.

  6. 6.

    The explanation for the shape of the curve plotted in Fig. 14.2 is similar to that used by Rankin and Roffia (2003, 224) for their closed economy.

  7. 7.

    In reality, both mechanisms are at work as recently illustrated by the Greek example.

  8. 8.

    The elements of the Jacobian matrix of the equilibrium dynamics in the neighborhood of steady states are provided in the appendix.

  9. 9.

    This is another way to show that the real exchange rate effect of public debt variations is independent of the net foreign asset position, and this remains true whether similar or dissimilar production technologies are assumed.

  10. 10.

    The transitional dynamics were calculated numerically using the NLP solver of GAMS 2.5, version 21.5.

  11. 11.

    Zee’s (1987) conclusion appears to be based on his presumption of asymptotic stability of the real exchange rate dynamics. Both the irresponsiveness of the initial real exchange rate and the dependence of the exchange rate dynamics thereafter on the sign of the net foreign asset position (Zee 1987, 611) can be traced back to this presumption.

References

  • Azariadis, C. (1993). Intertemporal macroeconomics. Oxford: Blackwell.

    Google Scholar 

  • Bednar-Friedl, B., Farmer, K., & Rainer, A. (2010). Effects of unilateral climate policy on terms of trade, capital accumulation and welfare in a world economy. Environmental and Resource Economics, 47, 495–520.

    Article  Google Scholar 

  • Bohn, H. (2008). The sustainability of fiscal policy in the United States. In R. Neck & J. E. Sturm (Eds.), Sustainability of public debt (pp. 15–49). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Candelon, B., & Palm, F. C. (2010). Banking and debt crises in Europe: The dangerous liaisons? CESifo Working Paper No. 3001, Category 6: Fiscal policy, macroeconomics and growth, March 2010.

    Google Scholar 

  • Chalk, N. A. (2000). The sustainability of bond-financed deficits: An overlapping generations approach. Journal of Monetary Economics, 45, 293–328.

    Article  Google Scholar 

  • Dabrowski, M. (2010). Euro crisis or debt crisis? CASE Networks E-briefs No. 09. http://www.case-research.eu. Accessed 24 June 2010.

  • De la Croix, D., & Michel, P. (2002). A theory of economic growth: Dynamics and policy in overlapping generations. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Diamond, P. A. (1965). National debt in a neoclassical growth model. American Economic Review, 55, 1135–1150.

    Google Scholar 

  • Farmer, K. (2011). Public-debt sustainability, exchange rates, and country-specific saving rates. International Advances of Economic Research, 17, 45–65.

    Article  Google Scholar 

  • Farmer, K., & Zotti, J. (2010). Sustainable government debt in a two-good, two-country overlapping generations model. International Review of Economics, 57(3), 254–283.

    Article  Google Scholar 

  • Feldstein, M. (1986). U.S. budget deficits and the European economies: Resolving the political economy puzzle. American Economic Review, 76, 342–346.

    Google Scholar 

  • Frenkel, J. A., & Razin, A. (1986). Fiscal policies in the world economy. Journal of Political Economy, 94(3), 564–594.

    Article  Google Scholar 

  • Gandolfo, G. (1997). Economic dynamics. Berlin: Springer.

    Google Scholar 

  • Goyette, C. (2009). The Dollar meltdown: Surviving the impeding currency crisis with gold, oil and other unconventional investments. Publisher unknown.

    Google Scholar 

  • IMF. (2006). World economic outlook. Washington, DC: IMF.

    Google Scholar 

  • IMF. (2008). World economic outlook. Washington, DC: IMF.

    Google Scholar 

  • IMF. (2009). World economic outlook. Washington, DC: IMF.

    Google Scholar 

  • Lin, S. (1994). Government debt and the real exchange rate in an overlapping generations’ model. Journal of Economic Integration, 9(1), 94–105.

    Article  Google Scholar 

  • Nyahoho, E. (2006). The impossible relationship between the deficit and the exchange rate. Journal of Policy Modeling, 28, 415–425.

    Article  Google Scholar 

  • Ono, T. (2002). The effects of emission permits on growth and the environment. Environmental & Resource Economics, 21, 75–87.

    Article  Google Scholar 

  • Rankin, N., & Roffia, B. (2003). Maximum sustainable government debt in the overlapping generations model. The Manchester School, 71(3), 217–241.

    Article  Google Scholar 

  • Wiedemer, D., Wiedemer, R., & Spitzer, C. (2009). Aftershock: Protect yourself and profit in the next global financial meltdown. New York: Wiley.

    Google Scholar 

  • Zee, H. H. (1987). Government debt, capital accumulation and the terms of trade in a model of interdependent economies. Economic Inquiry, 25, 599–618.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Farmer .

Mathematical Appendix

Mathematical Appendix

1.1 Utility Maximizing Consumption and Saving Functions of Younger Households

In order to show how the equations of motion in world market equilibrium are derived, the optimal consumption and savings levels of households for \( t=1,2,\ldots \)are needed. We indicate roughly how optimal consumption and savings for households in Home are obtained. First, insert \( {s_t} \) into the second budget constraint, while taking the international interest parity condition (14.8) into account. This implies:

$$ x_t^1+{e_t}y_t^1+{{{x_{t+1}^2}} \left/ {{(1+{i_{t+1 }})+{{{({e_{t+1 }}y_{t+1}^2)}} \left/ {{(1+{i_{t+1 }})}} \right.}}} \right.}={w_t}-{\tau_t}. $$

Second, maximize Eq. 14.7 subject to this intertemporal budget constraint and solve for optimal consumption quantities and optimal savings. An analogous procedure gives the optimal consumption quantities and optimal savings in Foreign.

$$ x_t^1=\Big[ {{\zeta \left/ {{\left( {1+\beta } \right)}} \right.}} \Big]\Big[ {w_t-{\tau_t}} \Big] $$
(14.25)
$$ x_t^{*,1 }=\Big[ {{\zeta \left/ {{\left( {1+{\beta^{*}}} \right)}} \right.}} \Big]\Big[ {w_t^{*}-\tau_t^{*}} \Big]{e_t} $$
(14.25*)
$$ y_t^1=\Big[ {{{{\left( {1-\zeta } \right)}} \left/ {{\left( {1+\beta } \right)}} \right.}} \Big]{{\left( {{e_t}} \right)}^{-1 }}\Big[ {w_t-{\tau_t}} \Big] $$
(14.26)
$$ y_t^{*,1 }={{{\left( {1-\zeta } \right)}} \left/ {{\left( {1+{\beta^{*}}} \right)\left( {w_t^{*}-\tau_t^{*}} \right)}} \right.} $$
(14.26*)
$$ x_0^2=\zeta \left( {1+{i_0}} \right){a_0}{G^L}\Big[ {k_0+b-{\Phi_0}} \Big],\;x_{t+1}^2={{{\beta \zeta }} \left/ {{\left( {1+\beta } \right)}} \right.}\left( {1+{i_{t+1 }}} \right)\left( {{w_t}-{\tau_t}} \right) $$
(14.27)
$$ \begin{array}{lllll} x_0^{*,2 }=\zeta {G^L}{a_0}\left[ {\left( {1+i_0^{*}} \right)\left( {k_0^{*}+{b^{*}}} \right)+\left( {1+{i_0}} \right){{{\left( {{e_0}} \right)}}^{-1 }}{\Phi_0}} \right]{e_0},\, \hfill \\ \,x_{t+1}^{*,2 } = {{{\left( {{\beta^{*}}\zeta } \right)}} \left/ {{\left( {1+{\beta^{*}}} \right)}} \right.}\left( {1+i_{t+1}^{*}} \right)\left( {w_t^{*}-\tau_t^{*}} \right){e_{t+1 }}\,\,\,\,\, \hfill \\ \end{array} $$
(14.27*)
$$ \begin{array}{lllllll} y_0^2=\left( {1-\zeta } \right){G^L}{a_0}\left( {1+{i_0}} \right){{\left( {{e_0}} \right)}^{-1 }}\left[ {k_0+b-{\Phi_0}} \right],\,\, \hfill \\ y_{t+1}^2={{{\beta \left( {1-\zeta } \right)}} \left/ {{\left( {1+\beta } \right)}} \right.}\left( {1+{i_{t+1 }}} \right)\left( {{w_t}-{\tau_t}} \right){{\left( {{e_{t+1 }}} \right)}^{-1 }} \hfill \\ \end{array} $$
(14.28)
$$ \begin{array}{lllll} y_0^{*,2 }=\left( {1-\zeta } \right){G^L}{a_0}\left[ {\left( {1+i_0^{*}} \right)\left( {k_0^{*}+{b^{*}}} \right)+{{{\left( {{e_0}} \right)}}^{-1 }}\left( {1+{i_0}} \right){\Phi_0}} \right],\,\, \hfill \\ y_{t+1}^{*,2 }={{{{\beta^{*}}\left( {1-\zeta } \right)}} \left/ {{\left( {1+{\beta^{*}}} \right)}} \right.}\left( {1+i_{t+1}^{*}} \right)\left( {w_t^{*}-\tau_t^{*}} \right) \hfill \\ \end{array} $$
(14.28*)
$$ s_t=\sigma\Big[ {w_t-{\tau_t}} \Big],\sigma \equiv {\beta \left/ {{\left( {1+\beta } \right)}} \right.} $$
(14.29)
$$ s_t^{*}={\sigma^{*}}\Big[ {w_t^{*}-\tau_t^{*}} \Big] $$
(14.29*)

1.2 Proof of Proposition 14.1

To prove proposition 14.1, let’s start with \( {F_k}(k)=\alpha (1-\alpha )\xi ({M \left/ {{{G^A}}} \right.}){k^{{\alpha -1}}}+\alpha (1-\alpha )\vartheta ({M \left/ {{{G^A}}} \right.}){k^{{\alpha -2}}}-1 \). It is immediate that (i) \( {F_k}(k) \) is a continuous and strictly decreasing function, that (ii) \( {\lim_{{k\to 0}}}{F_k}(k)=\infty \) and (iii) that \( {\lim_{{k\to \infty }}}{F_k}(k)=0 \). Hence, an Intermediate Value Theorem guaranties for each \( \vartheta \) the existence of a \( \kappa \) which solves \( {F_k}\left( {\kappa, \vartheta } \right)=1 \). Moreover, the solution is unique since \( {F_{kk }}\left( {k,\vartheta } \right)<0 \). Hence, \( \kappa =K\left( \vartheta \right) \). Note also that \( K\left( \vartheta \right) \) is a strictly increasing function because \( {F_{kk }}\left( {k,\vartheta } \right)<0 \) and \( {F_{{k\vartheta }}}\left( {k,\vartheta } \right)>0 \). To obtain ER2, combine \( {F_k}(\kappa, \vartheta )=1 \) and \( F(\kappa, \vartheta, {b^{*}})=\kappa \). \( {F_k}(\kappa, \vartheta )=1\Leftrightarrow \alpha (1-\alpha )({M \left/ {{{G^A}}} \right.})(\xi \kappa +\vartheta ){\kappa^{{\alpha -2}}}=1 \). \( F(\kappa, \vartheta, {b^{*}})=\kappa \Leftrightarrow \kappa ={\kappa^{{\alpha -2}}}({M \left/ {{{G^A}}} \right.})[\xi (1-\alpha ){\kappa^2}-\alpha \vartheta \kappa ]-[{{{(1-\sigma )}} \left/ {\sigma } \right.}]\vartheta -(1-\zeta ){\mu^{-1 }}{b^{*}}(1-{{{{\sigma^{*}}}} \left/ {\sigma } \right.}) \). Eliminating \( {\kappa^{{\alpha -2}}} \) from both equations gives: \( {{[\alpha (1-\alpha )({M \left/ {{{G^A}}} \right.})(\xi \kappa +\vartheta )]}^{-1 }}=\{\kappa +[{{{(1-\sigma )}} \left/ {\sigma } \right.}]\vartheta +(1-\zeta ){\mu^{-1 }}{b^{*}}(v)\}/ \) \( ({M \left/ {{{G^A}}} \right.})[\xi (1-\alpha ){\kappa^2}-\alpha \vartheta \kappa ] \). Rearranging this equation and solving it for \( \kappa \) yields: \( {\kappa^2}-2\eta \kappa -\nu =0 \) with \( \eta \) and \( \nu \) as defined in text after lemma 14.1. From this quadratic polynomial immediately follows: \( {\kappa_{+}}\equiv \eta +{{({\eta^2}+\nu )}^{0.5 }} \). Reinserting \( {\kappa_{+}} \) into \( \alpha (1-\alpha )({M \left/ {{{G^A}}} \right.})(\xi \kappa +\vartheta ){\kappa^{{\alpha -2}}}=1 \) results in ER2. ER1 follows from visual inspection of Fig. 14.1.▪

1.3 The Jacobian Matrix and Its Derivation

The Jacobian matrix of the dynamical system 14.15, 14.16, and 14.17 \( J(e,k,{k^{{*}}}) \) reads as follows:

$$ J(e,k,{k^{*}})=\left[ {\begin{array}{llll}{{{{\partial {e_{t+1 }}}} \left/ {{\partial {e_t}}} \right.}} & {{{{\partial {e_{t+1 }}}} \left/ {{\partial {k_t}}} \right.}} & {{{{\partial {e_{t+1 }}}} \left/ {{\partial k_t^{*}}} \right.}} \\ {{{{\partial k_{t+1 }}} \left/ {{\partial {e_t}}} \right.}} & {{{{\partial {k_{t+1 }}}} \left/ {{\partial {k_t}}} \right.}} & {{{{\partial {k_{t+1 }}}} \left/ {{\partial k_t^{*}}} \right.}} \\ {{{{\partial k_{t+1}^{*}}} \left/ {{\partial {e_t}}} \right.}} & {{{{\partial k_{t+1}^{*}}} \left/ {{\partial {k_t}}} \right.}} & {{{{\partial k_{t+1}^{*}}} \left/ {{\partial k_t^{*}}} \right.}} \\ \end{array}} \right]\equiv \left[ {\begin{array}{lll} {{j_{11 }}} & {{j_{12 }}} & {{j_{13 }}} \\ {{j_{21 }}} & {{j_{22 }}} & {{j_{23 }}} \\ {{j_{31 }}} & {{j_{32 }}} & {{j_{33 }}} \\ \end{array}} \right], $$
(14.30)

with

$$ {j_{11 }}=1+\left( {1-\alpha } \right)\left( {{H \left/ {k} \right.}} \right),\,\,{j_{12 }}=-{{{\left[ {\left( {1-\alpha } \right)\left( {1+i} \right)e} \right]}} \left/ {{\left( {{G^A}k} \right)}} \right.}, $$
$$ {j_{13 }}={{{\left[ {\left( {1-\alpha } \right)\left( {1+i} \right)e} \right]}} \left/ {{\left( {{G^A}{k^{*}}} \right)}} \right.}, $$
$$ {j_{21 }}=-{e^{-1 }}\Big[ {\left( {1-\zeta } \right)H-\zeta \Phi } \Big],{j_{22 }}=\Big[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}}} \right.}} \Big]\Big[ {1-\zeta +\zeta \sigma \left( {1-\alpha } \right)\left( {1+{b \left/ {k} \right.}} \right)} \Big], $$
$$ {j_{23 }}=-\left( {1-\zeta } \right){\mu^{-1 }}\Big[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}}} \right.}} \Big]\Big[ {1-{\sigma^{*}}\left( {1-\alpha } \right)\left( {1+{{{{b^{*}}}} \left/ {{{k^{*}}}} \right.}} \right)} \Big], $$
$$ {j_{31 }}={{{\zeta \mu \left( {H-\Phi} \right)}} \left/ {e} \right.},{j_{32 }}=-\zeta \mu \Big[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}}} \right.}} \Big]\Big[ {1-\sigma \left( {1-\alpha } \right)\left( {1+{b \left/ {k} \right.}} \right)} \Big], $$
$$ {j_{33 }}=\Big[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}}} \right.}} \Big]\Big[ {\zeta +\left( {1-\zeta } \right){\sigma^{*}}\left( {1-\alpha } \right)\left( {1+{{{{b^{*}}}} \left/ {{{k^{*}}}} \right.}} \right)} \Big],\mathrm{ whereby} $$
$$ H\equiv \left( {{M \left/ {{{G^A}}} \right.}} \right){k^{\alpha }}-k=\Big[ {{{{\left( {1+i} \right)}} \left/ {{\left( {{G^A}\alpha } \right)}} \right.}-1} \Big]k\mathrm{ and}\kern0.5em $$
$$ \Phi \equiv k+b\left\{ {\sigma \Big[ {{{{\left( {1+i} \right)}} \left/ {{{G^A}-1}} \right.}} \Big]+1} \right\}-{\sigma_0}{k^{\alpha }}. $$

To show roughly how we obtained the elements of the Jacobian matrix (14.30), we now describe the main steps taken in the derivation of \( {{{\partial {e_{t+1 }}}} \left/ {{\partial {e_t}=1+(1-\alpha )({H \left/ {k} \right.})}} \right.} \). First, take the total differential of Eq. 14.15 with respect to all variables: \( d{e_{t+1 }}={{({{{{M^{*}}}} \left/ {M} \right.})}^{-1 }}{k^{{\alpha -1}}}{{({k^{*}})}^{{1-\alpha }}}d{e_t}-e({M \left/ {{{M^{*}}}} \right.})(1-\alpha ){k^{{\alpha -2}}}{{({k^{*}})}^{{1-\alpha }}}d{k_{t+1 }}+e({M \left/ {{{M^{*}}}} \right.})(1-\alpha ){k^{{\alpha -1}}}{{({k^{*}})}^{{-\alpha }}}dk_{t+1}^{*} \). Second, solve the left-hand sides of Eqs. 14.16 and 14.17 simultaneously with respect to the total differentials of \( {k_{t+1 }} \) and \( k_{t+1}^{*} \). Third, form the partial differentials \( \partial {{{{k_{t+1 }}}} \left/ {{\partial {e_t}}} \right.} \) and \( {{{\partial k_{t+1}^{*}}} \left/ {{\partial {e_t}}} \right.} \) while taking the results of the second step into account. Fourth, evaluate the total differential of the first step at a steady-state solution and consider the infinitesimal changes of \( {k_{t+1 }} \) and \( k_{t+1}^{*} \) only with respect to \( {e_t} \): \( {{{\partial {e_{t+1 }}}} \left/ {{\partial {e_t}=1+}} \right.}e(1-\alpha )[{{({k^{*}})}^{-1 }}\partial k_{t+1}^{*}/\partial {e_t}-{k^{-1 }}\partial {k_{t+1 }}/\partial {e_t}] \). The last step is to insert the partial differentials evaluated at a steady-state solution from step three into the above equation.

1.4 Proof of Lemma 14.2

To calculate the eigenvalues (and the eigenvectors) of the Jacobian \( J\equiv J(e,k,{k^{*}}) \) we use the characteristic equation of the Jacobian (14.30): \( (J-{\lambda_i}I){v_i}=0 \), whereby \( I \) denotes the identity matrix, \( {\lambda_i}, \) \( i=1,2,3 \) denotes the eigenvalues (characteristic values), \( {{(\upsilon_i^e,\upsilon_i^k,\upsilon_i^{*})}^T}, \) \( i=1,2,3 \) is the transpose of the eigenvector (characteristic vector) associated with eigenvalue \( i=1,2,3 \), and the characteristic equation in expanded form reads as follows:

$$ \left( {J-{\lambda_i}I} \right){v_i}=0\Leftrightarrow \left( {\begin{array}{cccc}{{j_{11 }}-{\lambda_i}} & {{j_{12 }}} & {{j_{13 }}} \\ {{j_{21 }}} & {{j_{22 }}-{\lambda_i}} & {{j_{23 }}} \\ {{j_{31 }}} & {{j_{32 }}} & {{j_{33 }}-{\lambda_i}} \\ \end{array}} \right)\left( {\begin{array}{cccc}{\upsilon_i^e} \\ {\upsilon_i^k} \\ {\upsilon_i^{*}} \\ \end{array}} \right)=\left( {\begin{array}{ccc} 0 \\ 0 \\ 0 \\ \end{array}} \right). $$

Multiplying the second row of this matrix equation by \( -\mu \), adding it to the last row, and multiplying the first row by \( k/(1-\alpha ) \) yields the following equivalent equation:

$$ \left( {\begin{array}{ccccc}{\frac{k}{{\left( {1-\alpha } \right)}}\left( {1-{\lambda_i}} \right)+H} & {-\frac{{\left( {1+i} \right)e}}{{{G^A}}}} & {\frac{{\left( {1+i} \right)e{\mu^{-1 }}}}{{{G^A}}}} \\ {{j_{21 }}} & {{j_{22 }}-{\lambda_i}} & {{j_{23 }}} \\ {\frac{{\mu H}}{e}} & {\mu \left[ {{\lambda_i}-\frac{{\left( {1+i} \right)}}{{{G^A}}}} \right]} & {\frac{{\left( {1+i} \right)}}{{{G^A}}}-{\lambda_i}} \\ \end{array}} \right)\left( {\begin{array}{ccccccc}{\upsilon_i^e} \\ {\upsilon_i^k} \\ {\upsilon_i^{*}} \\ \end{array}} \right)=\left( {\begin{array}{ccccccc} 0 \\ 0 \\ 0 \\ \end{array}} \right). $$

By multiplying the first row of the revised matrix equation by \( {{{-\mu }} \left/ {e} \right.} \) times and adding it to the last row we get:

$$ \left( {\begin{array}{ccccccc} {\frac{k}{{\left( {1-\alpha } \right)}}\left( {1-{\lambda_i}} \right)+H} & {-\frac{{\left( {1+i} \right)e}}{{{G^A}}}} & {\frac{{\left( {1+i} \right)e{\mu^{-1 }}}}{{{G^A}}}} \\ {{j_{21 }}} & {{j_{22 }}-{\lambda_i}} & {{j_{23 }}} \\ {-\frac{{k\mu \left( {1-{\lambda_i}} \right)}}{{e\left( {1-\alpha } \right)}}} & {\mu {\lambda_i}} & {-{\lambda_i}} \\ \end{array}} \right)\left( {\begin{array}{ccccccc}{\upsilon_i^e} \\ {\upsilon_i^k} \\ {\upsilon_i^{*}} \\ \end{array}} \right)=\left( {\begin{array}{ccccccccc} 0 \\ 0 \\ 0 \\ \end{array}} \right). $$

Finally subtracting the last row \( {{{{\mu^{-1 }}(1+i)e}} \left/ {{({\lambda_i}{G^A})}} \right.} \) times from the first row leads to:

$$ \left( {\begin{array}{ccccccc}{\frac{k}{{\left( {1-\alpha } \right)}}\left( {1-{\lambda_i}} \right)\left( {1-\frac{1+i }{{{\lambda_i}}}} \right)+H} & 0 & 0 \\ {{j_{21 }}} & {{j_{22 }}-{\lambda_i}} & {{j_{23 }}} \\ {-\frac{{k\mu \left( {1-{\lambda_i}} \right)}}{{e\left( {1-\alpha } \right)}}} & {\mu {\lambda_i}} & {-{\lambda_i}} \\ \end{array}} \right)\left( {\begin{array}{cccccccc}{\upsilon_i^e} \\ {\upsilon_i^k} \\ {\upsilon_i^{*}} \\ \end{array}} \right)=\left( {\begin{array}{cccccc}0 \\ 0 \\ 0 \\ \end{array}} \right). $$
(14.31)

Equation 14.31 can be solved if and only if the determinant of the matrix in Eq. 14.31 vanishes, i.e. if either

$$ \left| {\begin{array}{llllll} {{j_{22 }}-{\lambda_i}} & {{j_{23 }}} \\\mu & {-1} \\\end{array}} \right|=0 $$
(14.32)

or

$$ \frac{k}{{\left( {1-\alpha } \right)}}\left( {1-{\lambda_i}} \right)\left( {1-\frac{1+i }{{{\lambda_i}}}} \right)+H=0. $$
(14.33)

There are thus two cases to be distinguished: case 1 in which Eq. 14.32 holds and case 2 for which Eq. 14.33 is true. Let us consider both cases in turn.

Case 1: Using the definition of \( {j_{22 }} \) and \( {j_{23 }} \), Eq. 14.32 straightforwardly leads to:

$$ {\lambda_3}={j_{22 }}+\mu {j_{23 }}=\frac{{\left( {1+i} \right)\left( {1-\alpha } \right)}}{{{G^A}}}\left( {\zeta \sigma \left( {1+\frac{b}{k}} \right)+\left( {1-\zeta } \right){\sigma^{*}}\left( {1+\frac{{{b^{*}}}}{{{k^{*}}}}} \right)} \right). $$

To determine its corresponding eigenvector, we make use of Eq. 14.31. Because \( (k/(1-\alpha ))(1-{\lambda_i})(1-(1+i)/{\lambda_i})+H\ne 0 \), it follows that \( \upsilon_3^e=0 \), and thus Eq. 14.31 turns into:

$$ \left( {\begin{array}{ccccccc}{{j_{22 }}-{\lambda_3}} & {{j_{23 }}} \\ {\mu {\lambda_3}} & {-{\lambda_3}} \\ \end{array}} \right)\left( {\begin{array}{ccccccc}{\upsilon {}_3^k} \\ {\upsilon_3^{*}} \\ \end{array}} \right)=\left( {\begin{array}{ccccccc} 0 \\ 0 \\ \end{array}} \right), $$

with the solution claimed in lemma 14.2. This can be seen as follows: the first row leads to \( \upsilon_3^{*}=\mu \upsilon_3^k \), and the second row as a result of the value of \( {\lambda_3} \) can then be solved identically, i.e. we can choose \( \upsilon_3^k=1 \).

Case 2: In this case we know that \( (k/(1-\alpha ))(1-{\lambda_i})(1-(1+i)/{\lambda_i})+H=0 \). Since \( H/k=(1+i)/\alpha -1 \), it follows that \( {{{\left( {1+i} \right)}} \left/ {\alpha } \right.}-1>1 \) and \( {\lambda_2}=\alpha \) as claimed in lemma 14.2.

The eigenvector associated with the second eigenvalue can be found as follows: \( (k/(1-\alpha ))(1-{\lambda_i})(1-(1+i)/{\lambda_i})+H=0 \) implies that \( \upsilon_2^e \) can be chosen freely, so, for instance, we can take \( \upsilon_2^e={e \left/ {k} \right.} \). Therefore Eq. 14.31 reduces to:

$$ \left( {\begin{array}{cccccccc}{{j_{22 }}-{\lambda_i}} & {{j_{23 }}} \\ {\mu \alpha } & {-\alpha } \\ \end{array}} \right)\left( {\begin{array}{cccccccc} {\upsilon {}_2^k} \\ {\upsilon_2^{*}} \\ \end{array}} \right)=\left( {\begin{array}{cccccccc} {-{j_{21 }}\frac{e}{k}} \\ {-\mu } \\ \end{array}} \right). $$

The second row of this matrix equation yields \( \upsilon_2^{*}=\mu (\upsilon_2^k+{\alpha^{-1 }}) \). The first row equals:

$$ \left( {{j_{22 }}-\alpha } \right)\upsilon_2^k+{j_{23 }}\mu \left( {\upsilon_2^k+{\alpha^{-1 }}} \right)=-{j_{21 }}\left( {{e \left/ {k} \right.}} \right). $$

After substituting for the third eigenvalue, the result is:

$$ \upsilon_2^k=\frac{{1-{{{{\lambda_3}}} \left/ {k} \right.}+\zeta \left( {{b \left/ {k} \right.}} \right)\Big[ {1-\sigma +\left( {1+i} \right)\left( {{\sigma \left/ {{\left( {\alpha {G^A}} \right)}} \right.}} \right)} \Big]}}{{{\lambda_3}-\alpha }}. $$

1.5 Proof of Proposition 14.2

From lemma 14.2 we know that \( {\lambda_2}=\alpha \) and by assumption \( \alpha <1 \) holds. Second, \( {\lambda_1}={(1+i) \left/ {{({G^A}\alpha )}} \right.} \) \( >1 \) follows from \( {k^L}<{k^H}<\bar{k} \), since \( k<\bar{k}\Leftrightarrow \) \( 1<({M \left/ {{{G^A}}} \right.}){k^{{\alpha -1}}} \) \( ={(1+i) \left/ {{({G^A}\alpha )}} \right.} \). \( {\lambda_3}<1\Leftrightarrow \) \( {{{[(1+{i^H})(1-\alpha )]}} \left/ {{{G^A}}} \right.}\{\zeta \sigma (1+{{{b \left/ {k} \right.}}^H})+(1-\zeta ){\sigma^{*}}[1+{{{{b^{*}}}} \left/ {{{{{({k^{*}})}}^H}}} \right.}]\} \) \( +(1-\zeta ){\sigma^{*}}[1+{{{{b^{*}}}} \left/ {{{{{({k^{*}})}}^H}}} \right.}]\} \). This follows from the facts that: (i) \( {{{[(1+{i^H})(1-\alpha )]}} \left/ {{{G^A}}} \right.}\{\zeta \sigma (1+{{{b \left/ {k} \right.}}^H})+(1-\zeta ){\sigma^{*}}(1+{{{{b^{*}}}} \left/ {{{{{({k^{*}})}}^H}}} \right.})\}<1 \) is equal to the derivative of the function \( F(k) \) with respect to k evaluated at the higher steady state, (ii) function \( F(k) \) is strictly concave and (iii) its graph cuts the 45° line at the higher steady state from above (see Fig. 14.1a in the main text). On the other hand, for \( {\lambda_3}>1 \) we have \( {{{[(1+{i^L})(1-\alpha )]}} \left/ {{{G^A}}} \right.}\{\zeta \sigma (1+{{{b \left/ {k} \right.}}^L})+(1-\zeta ){\sigma^{*}} \) \( [1+{{{{b^{*}}}} \left/ {{{{{({k^{*}})}}^L}}} \right.}]\}>1 \), which is implied by the fact that the graph of \( F(k) \) cuts the 45° line at the lower steady state from below.

1.6 Proof of Proposition 14.4

To start with the proof of proposition 14.4, we approximate Eqs. 14.15, 14.16, and 14.17 in a small neighborhood of \( (e,{k^H},{k^{*,H }}) \) as follows:

$$ \left[ {\begin{array}{ccccccc}{{e_{t+1 }}} \\ {{k_{t+1 }}} \\ {k_{t+1}^{*}} \\ \end{array}} \right]=\left[ {J\left( {e,{k^H},{k^{*,H }}} \right)} \right]\left[ {\begin{array}{ccccccc} {{e_t}} \\ {{k_t}} \\ {k_t^{*}} \\ \end{array}} \right]+\left[ {I-J\left( {e,{k^H},{k^{*,H }}} \right)} \right]\left[ {\begin{array}{ccccccc} e \\ {{k^H}} \\ {{k^{*,H }}} \\ \end{array}} \right]. $$
(14.34)

The general solution of the first-order linear difference equation system (14.34) takes the following form:

$$ {e_t}=e+{\kappa_2}\upsilon_2^e{{\left( {{\lambda_2}} \right)}^t}+{\kappa_3}\upsilon_3^e{{\left( {{\lambda_3}} \right)}^t}, $$
$$ k_t={k }+{\kappa_2}\upsilon_2^k{{\left( {{\lambda_2}} \right)}^t}+{\kappa_3}\upsilon_3^k{{\left( {{\lambda_3}} \right)}^t}, $$
(14.35)
$$ k_t^{*}={k^{*}}+{\kappa_2}\upsilon_2^{*}{{\left( {{\lambda_2}} \right)}^t}+{\kappa_3}\upsilon_3^{*}{{\left( {{\lambda_3}} \right)}^t}. $$

Here \( {\kappa_i},i=2,3 \) denote constants determined by the initial conditions for capital intensities in Home and Foreign, while \( {\upsilon_i}={{(\upsilon_i^e,\upsilon_i^k,\upsilon_i^{*})}^T},i=2,3 \) is the eigenvector associated with the eigenvalues within the unit circle \( {\lambda_i},i=2,3. \) Note that the eigenvector associated with the eigenvalue larger than unity is excluded from Eq. 14.35 by setting \( {\kappa_1}=0 \). However, this exclusion implies that the equilibrium dynamics must not start from any feasible combination \( ({e_0},{k_0},k_0^{*}) \) in the neighborhood of \( (e,{k^H},{k^{*,H }}) \), and that the initial combination of dynamic variables has to be located on the stable sub-manifold in the \( ({e_t},{k_t},k_t^{*}) \) -space. If \( ({e_0},{k_0},k_0^{*}) \) belongs to this stable sub-manifold, the economy converges towards \( (e,{k^H},{k^{*,H }}) \), otherwise the system dynamics strays in finite time. From the proof of lemma 14.2 we know that the eigenvectors associated with the eigenvalues of the Jacobian within the unit circle \( {\upsilon_i}, \) \( i=2,3 \) read as follows:

$$ {\upsilon_2}={{(-{e \left/ {k} \right.},{1 \left/ {{\alpha +\gamma, \gamma \mu }} \right.})}^T},{\upsilon_3}={{(0,1,\mu )}^T},\gamma \equiv {{{[\zeta b(1-\sigma +\sigma {\lambda_1})]}} \left/ {{[k(\alpha -{\lambda_3})]}} \right.}. $$

Next, these eigenvectors have to be inserted into the second and third equation of (14.35) and solved simultaneously for \( {\kappa_2}{{({\lambda_2})}^t} \) and \( {\kappa_3}{{({\lambda_3})}^t} \). The results are as follows:

$$ {\kappa_2}{\lambda_2}^t={{{[{k_t}-{k^H}-(k_t^{*}-{k^{*,H }})]}} \left/ {{(\upsilon_2^k-\upsilon_3^k)=}} \right.}\alpha [{k_t}-{k^H}-{\mu^{-1 }}(k_t^{*}-{k^{*,H }})], $$
$$ {\kappa_3}{\lambda_3}^t=\alpha {\mu^{-1 }}[\upsilon_2^k(k_t^{*}-{k^{*,H }})-\upsilon_2^{*}({k_t}-{k^H})]=\alpha [({1 \left/ {\alpha } \right.}+\gamma ){\mu^{-1 }}(k_t^{*}-{k^{*,H }})-\gamma ({k_t}-{k^H})]. $$

The next step is to consider the second and the third equation of (14.35) for \( t+1 \) and \( t \), and then to subtract the latter from the former. We get the following results: \( {k_{t+1 }}-{k_t}=({1 \left/ {{\alpha +\gamma }} \right.})({\lambda_2}-1){\kappa_2}{\lambda_2}^t+({\lambda_3}-1){\kappa_3}{\lambda_3}^t \), \( k_{t+1}^{*}-k_t^{*}=\gamma ({\lambda_2}-1){\kappa_2}{\lambda_2}^t \) \( +({\lambda_3}-1){\kappa_3}{\lambda_3}^t \). The last step is to insert into these equations the equations for \( {\kappa_2}{\lambda_2}^t \) and \( {\kappa_3}{\lambda_3}^t \) from above, and to collect terms. As a consequence, Eqs. 14.23 and 14.24 are obtained. Finally, inserting the equations for \( {\kappa_2}{\lambda_2}^t \) and \( {\kappa_3}{\lambda_3}^t \) into the first equation of (14.35) and remembering that \( \upsilon_2^e=-{e \left/ {k} \right.},\upsilon_3^e=0 \) holds, we obtain Eq. 14.22.

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farmer, K., Schelnast, M. (2013). Real Exchange Rate and Public Debt in a Two-Advanced-Country OLG Model. In: Growth and International Trade. Springer Texts in Business and Economics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33669-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33669-0_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33668-3

  • Online ISBN: 978-3-642-33669-0

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics