Advertisement

Refined Graph Rewriting in Span-Categories

A Framework for Algebraic Graph Transformation
  • Michael Löwe
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7562)

Abstract

There are three major algebraic approaches to graph transformation, namely the double-pushout (DPO), single-pushout (SPO), and sesqui-pushout approach (SqPO). In this paper, we present a framework that generalises all three approaches. The central issue is a gluing construction, which is a generalisation of the construction introduced in [14]. It has pushout-like properties wrt. composition and decomposition, which allow to reestablish major parts of the theory for the algebraic approaches on a general level. We investigate parallel independence here.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauderon, M., Jacquet, H.: Pullback as a generic graph rewriting mechanism. Applied Categorical Structures 9(1), 65–82 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg, G. (eds.): ICGT 2006. LNCS, vol. 4178. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  3. 3.
    Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In: Corradini, et al. (eds.) [2], pp. 30–45Google Scholar
  4. 4.
    Drewes, F., Hoffmann, B., Janssens, D., Minas, M., Van Eetvelde, N.: Adaptive star grammars. In: Corradini, et al. (eds.) [2], pp. 77–91Google Scholar
  5. 5.
    Duval, D., Echahed, R., Prost, F.: Graph rewriting with polarized cloning. CoRR, abs/0911.3786 (2009)Google Scholar
  6. 6.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer (2006)Google Scholar
  7. 7.
    Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.): ICGT 2010. LNCS, vol. 6372. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  8. 8.
    Golas, U., Ehrig, H., Habel, A.: Multi-amalgamation in adhesive categories. In: Ehrig, et al. (eds.) [7], pp. 346–361Google Scholar
  9. 9.
    Heindel, T.: Hereditary pushouts reconsidered. In: Ehrig, et al. (eds.) [7], pp. 250–265Google Scholar
  10. 10.
    Kahl, W.: A relation-algebraic approach to graph structure transformation. Habil. Thesis 2002-03, Fakultät für Informatik, Univ. der Bundeswehr München (2001)Google Scholar
  11. 11.
    Kahl, W.: Amalgamating pushout and pullback graph transformation in collagories. In: Ehrig, et al. (eds.) [7], pp. 362–378Google Scholar
  12. 12.
    Kennaway, R.: Graph Rewriting in Some Categories of Partial Morphisms. In: Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) Graph Grammars 1990. LNCS, vol. 532, pp. 490–504. Springer, Heidelberg (1991)CrossRefGoogle Scholar
  13. 13.
    Löwe, M.: Algebraic approach to single-pushout graph transformation. Theor. Comput. Sci. 109(1&2), 181–224 (1993)zbMATHCrossRefGoogle Scholar
  14. 14.
    Löwe, M.: Graph rewriting in span-categories. In: Ehrig, et al. (eds.) [7], pp. 218–233Google Scholar
  15. 15.
    Löwe, M.: A unifying framework for algebraic graph transformation. Technical Report 2012/03, FHDW-Hannover (2012)Google Scholar
  16. 16.
    McLarty, C.: Elementary Categories, Elementary Toposes. Oxford Science Publications, Clarendon Press, Oxford (1992)zbMATHGoogle Scholar
  17. 17.
    Monserrat, M., Rossello, F., Torrens, J., Valiente, G.: Single pushout rewriting in categories of spans i: The general setting. Technical Report LSI-97-23-R, Department de Llenguatges i Sistemes Informtics, Universitat Politcnica de Catalunya (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michael Löwe
    • 1
  1. 1.FHDW-HannoverHannoverGermany

Personalised recommendations