Advertisement

Construction of Integrity Preserving Triple Graph Grammars

  • Anthony Anjorin
  • Andy Schürr
  • Gabriele Taentzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7562)

Abstract

Triple Graph Grammars (TGGs) are a rule-based technique of specifying a consistency relation over a source, correspondence, and target domain, which can be used for bidirectional model transformation.

A current research challenge is increasing the expressiveness of TGGs by ensuring that global constraints in the involved domains are not violated by the transformation. Negative Application Conditions (NACs) can be used to enforce this property, referred to as schema compliance.

In previous work, we have presented a polynomial control algorithm for integrity preserving TGGs, using NACs only to ensure schema compliance, meaning that, for efficiency reasons, the usage of NACs must be restricted appropriately. In this paper, we apply the well-known translation of global constraints to application conditions for a given TGG and set of global constraints. We show that the derived set of NACs is indeed sufficient and necessary to ensure schema compliance, i.e., that the TGG together with the derived NACs is integrity preserving by construction.

Keywords

bidirectional transformation triple graph grammars schema compliance integrity preservation negative application conditions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Dang, D.-H., Gogolla, M.: On Integrating OCL and Triple Graph Grammars. In: Chaudron, M.R.V. (ed.) MODELS 2008 Workshop. LNCS, vol. 5421, pp. 124–137. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Ehrig, H., Ehrig, K., Ermel, C., Hermann, F., Taentzer, G.: Information Preserving Bidirectional Model Transformations. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422, pp. 72–86. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Berlin (2006)MATHGoogle Scholar
  4. 4.
    Ehrig, H., Ermel, C., Hermann, F., Prange, U.: On-the-Fly Construction, Correctness and Completeness of Model Transformations Based on Triple Graph Grammars. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 241–255. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Ehrig, H., Habel, A., Ehrig, K., Pennemann, K.H.: Theory of Constraints and Application Conditions: From Graphs to High-Level Structures. Fundamenta Informaticae 74(1), 135–166 (2006)MathSciNetMATHGoogle Scholar
  6. 6.
    Ehrig, H., Hermann, F., Sartorius, C.: Completeness and Correctness of Model Transformations based on Triple Graph Grammars with Negative Application Conditions. In: Boronat, A., Heckel, R. (eds.) GTVMT 2009. ECEASST, vol. 18. EASST (2009)Google Scholar
  7. 7.
    Golas, U., Ehrig, H., Hermann, F.: Formal Specification of Model Transformations by Triple Graph Grammars with Application Conditions. In: Echahed, R., Habel, A., Mosbah, M. (eds.) GCM 2010. ECEASST, vol. 39. EASST (2011)Google Scholar
  8. 8.
    Guerra, E., de Lara, J.: Attributed Typed Triple Graph Transformation with Inheritance in the Double Pushout Approach. Tech. rep., Universidad Carlos III, Madrid (2006)Google Scholar
  9. 9.
    Hermann, F., Ehrig, H., Orejas, F., Golas, U.: Formal Analysis of Functional Behaviour for Model Transformations Based on Triple Graph Grammars. In: Ehrig, H., Rensink, A., Rozenberg, G., Schürr, A. (eds.) ICGT 2010. LNCS, vol. 6372, pp. 155–170. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Hermann, F., Golas, U., Orejas, F.: Efficient Analysis and Execution of Correct and Complete Model Transformations Based on Triple Graph Grammars. In: Bézivin, J., Soley, M.R., Vallecillo, A. (eds.) MDI 2010. ICPS, vol. 482, pp. 22–31. ACM, New York (2010)Google Scholar
  11. 11.
    Klar, F., Lauder, M., Königs, A., Schürr, A.: Extended Triple Graph Grammars with Efficient and Compatible Graph Translators. In: Engels, G., Lewerentz, C., Schäfer, W., Schürr, A., Westfechtel, B. (eds.) Nagl Festschrift. LNCS, vol. 5765, pp. 141–174. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  12. 12.
    Rose, S., Lauder, M., Schlereth, M., Schürr, A.: A Multidimensional Approach for Concurrent Model Driven Automation Engineering. In: Osis, J., Asnina, E. (eds.) Model-Driven Domain Analysis and Software Development: Architectures and Functions, pp. 90–113. IGI Publishing (2011)Google Scholar
  13. 13.
    Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In: Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–163. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  14. 14.
    Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT 2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Taentzer, G., Rensink, A.: Ensuring Structural Constraints in Graph-Based Models with Type Inheritance. In: Cerioli, M. (ed.) FASE 2005. LNCS, vol. 3442, pp. 64–79. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Anthony Anjorin
    • 1
  • Andy Schürr
    • 2
  • Gabriele Taentzer
    • 3
  1. 1.Graduate School of Computational EngineeringTechnische Universität DarmstadtGermany
  2. 2.Real-Time Systems LabTechnische Universität DarmstadtGermany
  3. 3.Fachbereich Mathematik und InformatikPhilipps-Universität MarburgGermany

Personalised recommendations