Collecting Information by Power-Aware Mobile Agents

  • Julian Anaya
  • Jérémie Chalopin
  • Jurek Czyzowicz
  • Arnaud Labourel
  • Andrzej Pelc
  • Yann Vaxès
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7611)


A set of identical, mobile agents is deployed in a weighted network. Each agent possesses a battery - a power source allowing the agent to move along network edges. Agents use their batteries proportionally to the distance traveled. At the beginning, each agent has its initial information. Agents exchange the actually possessed information when they meet. The agents collaborate in order to perform an efficient convergecast , where the initial information of all agents must be eventually transmitted to some agent.

The objective of this paper is to investigate what is the minimal value of power, initially available to all agents, so that convergecast may be achieved. We study the question in the centralized and the distributed settings. In the distributed setting every agent has to perform an algorithm being unaware of the network. We give a linear-time centralized algorithm solving the problem for line networks. We give a 2-competitive distributed algorithm achieving convergecast for tree networks. The competitive ratio of 2 is proved to be the best possible for this problem, even if we only consider line networks. We show that already for the case of tree networks the centralized problem is strongly NP-complete. We give a 2-approximation centralized algorithm for general graphs.


Wireless Sensor Network Mobile Robot Mobile Agent Competitive Ratio Initial Information 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, S.: Energy-efficient algorithms. Comm. ACM 53(5), 86–96 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. on Comput. 29(4),1164–1188Google Scholar
  3. 3.
    Alpern, S., Gal, S.: The theory of search games and rendezvous. Kluwer Academic Publ. (2002)Google Scholar
  4. 4.
    Ambühl, C.: An Optimal Bound for the MST Algorithm to Compute Energy Efficient Broadcast Trees in Wireless Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1139–1150. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence algorithm for mobile robots with limited visibility. IEEE Trans. on Robotics and Automation 15(5), 818–828 (1999)CrossRefGoogle Scholar
  6. 6.
    Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. In: Distributed Computing, pp. 235–253 (2006)Google Scholar
  7. 7.
    Annamalai, V., Gupta, S.K.S., Schwiebert, L.: On Tree-Based Convergecasting in Wireless Sensor Networks. IEEE Wireless Communications and Networking 3, 1942–1947 (2003)Google Scholar
  8. 8.
    Augustine, J., Irani, S., Swamy, C.: Optimal powerdown strategies. SIAM J. Comput. 37, 1499–1516 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two traveling salesmen on a tree. Discrete Applied Mathematics 68, 17–32 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Azar, Y.: On-line Load Balancing. In: Fiat, A., Woeginger, G. (eds.) Online Algorithms 1996. LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph exploration by a mobile robot. Information and Computation 152, 155–172 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Baeza Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the Plane. Information and Computation 106(2), 234–252 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. In: Proc. 30th STOC, pp. 269–278 (1998)Google Scholar
  14. 14.
    Bender, M., Slonim, D.: The power of team exploration: two robots can learn unlabeled directed graphs. In: Proc. 35th FOCS, pp. 75–85 (1994)Google Scholar
  15. 15.
    Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Machine Learning 18(2/3), 231–254 (1995)CrossRefGoogle Scholar
  16. 16.
    Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM J. Comput. 26(1), 110–137 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Bunde, D.P.: Power-aware scheduling for makespan and flow. In: SPAA, pp. 190–196 (2006)Google Scholar
  18. 18.
    Chen, F., Johnson, M.P., Alayev, Y., Bar-Noy, A., La Porta, T.F.: Who, When, Where: Timeslot Assignment to Mobile Clients. IEEE Transactions on Mobile Computing 11(1), 73–85 (2012)CrossRefGoogle Scholar
  19. 19.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gathering Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Cohen, R., Peleg, D.: Convergence Properties of the Gravitational Algorithm in Asynchronous Robot Systems. SIAM J. on Comput. 34(6), 1516–1528 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Cord-Landwehr, A., Degener, B., Fischer, M., Hüllmann, M., Kempkes, B., Klaas, A., Kling, P., Kurras, S., Märtens, M., Meyer auf der Heide, F., Raupach, C., Swierkot, K., Warner, D., Weddemann, C., Wonisch, D.: A New Approach for Analyzing Convergence Algorithms for Mobile Robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 650–661. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  22. 22.
    Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In: Proc. 31st FOCS, vol. I, pp. 355–361 (1990)Google Scholar
  23. 23.
    Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the Computational Power of Oblivious Robots: Forming a Series of Geometric Patterns. In: Proc. PODC, pp. 267–276 (2010)Google Scholar
  24. 24.
    Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-Aware Collective Tree Exploration. In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots with limited visibility. Th. Comp. Science 337, 147–168 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective Tree Exploration. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 141–151. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness, 96–105, 224 (1979)Google Scholar
  28. 28.
    Frederickson, G., Hecht, M., Kim, C.: Approximation algorithms for some routing problems. SIAM J. on Comput. 7, 178–193 (1978)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An Application-Specific Protocol Architecture for Wireless Microsensor Networks. Transactions on Wireless Communication 1(4), 660–670 (2002)CrossRefGoogle Scholar
  30. 30.
    Irani, S., Shukla, S.K., Gupta, R.: Algorithms for power savings. ACM Trans. on Algorithms 3(4), Article 41 (2007)Google Scholar
  31. 31.
    Kesselman, A., Kowalski, D.R.: Fast distributed algorithm for convergecast in ad hoc geometric radio networks. Journal of Parallel and Distributed Computing 66(4), 578–585 (2006)zbMATHCrossRefGoogle Scholar
  32. 32.
    Krishnamachari, L., Estrin, D., Wicker, S.: The impact of data aggregation in wireless sensor networks. In: ICDCS Workshops, pp. 575–578 (2002)Google Scholar
  33. 33.
    Megow, N., Mehlhorn, K., Schweitzer, P.: Online Graph Exploration: New Results on Old and New Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 478–489. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  34. 34.
    Nikoletseas, S., Spirakis, P.G.: Distributed Algorithms for Energy Efficient Routing and Tracking in Wireless Sensor Networks. Algorithms 2, 121–157 (2009)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Rajagopalan, R., Varshney, P.K.: Data-aggregation techniques in sensor networks: a survey. IEEE Communications Surveys and Tutorials 8(4), 48–63 (2006)CrossRefGoogle Scholar
  36. 36.
    Stojmenovic, I., Lin, X.: Power-Aware Localized Routing in Wireless Networks. IEEE Trans. Parallel Distrib. Syst. 12(11), 1122–1133 (2001)CrossRefGoogle Scholar
  37. 37.
    Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Th. Comp. Science 411(26-28), 2433–2453 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc. of 36th FOCS, pp. 374–382 (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Julian Anaya
    • 1
  • Jérémie Chalopin
    • 2
  • Jurek Czyzowicz
    • 1
  • Arnaud Labourel
    • 2
  • Andrzej Pelc
    • 1
  • Yann Vaxès
    • 2
  1. 1.Université du Québec en OutaouaisGatineauCanada
  2. 2.LIF, CNRS & Aix-Marseille UniversityMarseilleFrance

Personalised recommendations