Asynchronous Pattern Formation by Anonymous Oblivious Mobile Robots

  • Nao Fujinaga
  • Yukiko Yamauchi
  • Shuji Kijima
  • Masafumi Yamashita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7611)


We present an oblivious pattern formation algorithm for anonymous mobile robots in the asynchronous model. The robots obeying the algorithm, starting from any initial configuration I, always form a given pattern F, if I and F do not contain multiplicities and ρ(I) divides ρ(F), where ρ(·) denotes the geometric symmetricity. Our algorithm substantially outdoes an algorithm by Dieudonné et al. proposed in DISC 2010, which is dedicated to ρ(I) = 1. Our algorithm is best possible (as long as I and F do not contain multiplicities), since there is no algorithm that always forms F from I when ρ(F) is not divisible by ρ(I).

All known pattern formation algorithms are constructed from scratch. We instead use a bipartite matching algorithm (between the robots and the points in F) we proposed in OPODIS 2011 as a core subroutine, to make the description of algorithm concise and easy to understand.


Mobile Robot Pattern Formation Local Coordinate System Matched Point Global Coordinate System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bandettini, A., Luporini, F., Biglietta, G.: A survey on open problems for mobile robots, arXiv:1111.2259v1 (2011)Google Scholar
  2. 2.
    Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gathering Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Commu. ACM 17, 643–644 (1974)zbMATHCrossRefGoogle Scholar
  4. 4.
    Dieudonné, Y., Petit, F., Villain, V.: Leader Election Problem versus Pattern Formation Problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 267–281. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theoretical Computer Science 407, 412–447 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern Formation through Optimum Matching by Oblivious CORDA Robots. In: Lu, C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 1–15. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Izumi, T., Soussi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita, M.: The gathering problem for two oblivious robots with unreliable compasses. SIAM J. of Comput. 41(1), 26–46 (2012)zbMATHCrossRefGoogle Scholar
  8. 8.
    Nagamochi, H., Yamashita, M., Ibaraki, T.: Distributed algorithm for cooperative controlling of anonymous mobile robots. Technical Reports of IEICE, COMP95-24, pp. 31–40 (1995) (in Japanese)Google Scholar
  9. 9.
    Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric patterns. SIAM J. of Comput. 28(4), 1347–1363 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anonymous mobile robots. Theoretical Computer Science 411, 2433–2453 (2010)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nao Fujinaga
    • 1
  • Yukiko Yamauchi
    • 1
  • Shuji Kijima
    • 1
  • Masafumi Yamashita
    • 1
  1. 1.Department of InformaticsKyushu UniversityJapan

Personalised recommendations