On Byzantine Broadcast in Loosely Connected Networks

  • Alexandre Maurer
  • Sébastien Tixeuil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7611)


We consider the problem of reliably broadcasting information in a multihop asynchronous network that is subject to Byzantine failures. Most existing approaches give conditions for perfect reliable broadcast (all correct nodes deliver the authentic message and nothing else), but they require a highly connected network. An approach giving only probabilistic guarantees (correct nodes deliver the authentic message with high probability) was recently proposed for loosely connected networks, such as grids and tori. Yet, the proposed solution requires a specific initialization (that includes global knowledge) of each node, which may be difficult or impossible to guarantee in self-organizing networks – for instance, a wireless sensor network, especially if they are prone to Byzantine failures.

In this paper, we propose a new protocol offering guarantees for loosely connected networks that does not require such global knowledge dependent initialization. In more details, we give a methodology to determine whether a set of nodes will always deliver the authentic message, in any execution. Then, we give conditions for perfect reliable broadcast in a torus network. Finally, we provide experimental evaluation for our solution, and determine the number of randomly distributed Byzantine failures than can be tolerated, for a given correct broadcast probability.


Byzantine failures Networks Broadcast Fault tolerance Distributed computing Protocol Random failures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and Advanced Topics. McGraw-Hill Publishing Company, New York (1998)Google Scholar
  2. 2.
    Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Aguilera, M.K., Aspnes, J. (eds.) PODC, pp. 138–147. ACM (2005)Google Scholar
  3. 3.
    Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI, pp. 173–186 (1999)Google Scholar
  4. 4.
    Dolev, D.: The Byzantine generals strike again. Journal of Algorithms 3(1), 14–30 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Drabkin, V., Friedman, R., Segal, M.: Efficient byzantine broadcast in wireless ad-hoc networks. In: DSN, pp. 160–169. IEEE Computer Society (2005)Google Scholar
  6. 6.
    Dubois, S., Masuzawa, T., Tixeuil, S.: The Impact of Topology on Byzantine Containment in Stabilization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 495–509. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Dubois, S., Masuzawa, T., Tixeuil, S.: On Byzantine Containment Properties of the min + 1 Protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 96–110. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Dubois, S., Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabilization. In: IEEE Transactions on Parallel and Distributed Systems, TPDS (2011)Google Scholar
  9. 9.
    Dubois, S., Masuzawa, T., Tixeuil, S.: Maximum Metric Spanning Tree Made Byzantine Tolerant. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 150–164. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  10. 10.
    Koo, C.-Y.: Broadcast in radio networks tolerating byzantine adversarial behavior. In: Chaudhuri, S., Kutten, S. (eds.) PODC, pp. 275–282. ACM (2004)Google Scholar
  11. 11.
    Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM Trans. Program. Lang. Syst. 4(3), 382–401 (1982)zbMATHCrossRefGoogle Scholar
  12. 12.
    Malkhi, D., Mansour, Y., Reiter, M.K.: Diffusion without false rumors: on propagating updates in a Byzantine environment. Theoretical Computer Science 299(1-3), 289–306 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Malkhi, D., Reiter, M., Rodeh, O., Sella, Y.: Efficient update diffusion in byzantine environments. In: The 20th IEEE Symposium on Reliable Distributed Systems (SRDS 2001), pp. 90–98. IEEE, Washington (2001)Google Scholar
  14. 14.
    Masuzawa, T., Tixeuil, S.: Bounding the Impact of Unbounded Attacks in Stabilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 440–453. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with unbounded byzantine faults. International Journal of Principles and Applications of Information Science and Technology (PAIST) 1(1), 1–13 (2007)Google Scholar
  16. 16.
    Maurer, A., Tixeuil, S.: Limiting byzantine influence in multihop asynchronous networks. In: IEEE International Conference on Distributed Computing Systems, ICDCS (2012)Google Scholar
  17. 17.
    Minsky, Y., Schneider, F.B.: Tolerating malicious gossip. Distributed Computing 16(1), 49–68 (2003)CrossRefGoogle Scholar
  18. 18.
    Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Symposium on Reliable Distributed Systems (SRDS 2002), pp. 22–29. IEEE Computer Society (2002)Google Scholar
  19. 19.
    Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzantine nodes. IEEE Transactions on Parallel and Distributed Systems (TPDS) 20(12), 1777–1789 (2009)CrossRefGoogle Scholar
  20. 20.
    Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf. Process. Lett. 93(3), 109–115 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Sakurai, Y., Ooshita, F., Masuzawa, T.: A Self-stabilizing Link-Coloring Protocol Resilient to Byzantine Faults in Tree Networks. In: Higashino, T. (ed.) OPODIS 2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Alexandre Maurer
    • 1
  • Sébastien Tixeuil
    • 1
  1. 1.UPMC Sorbonne UniversitésFrance

Personalised recommendations