DISC 2012: Distributed Computing pp 210-222

# Distributed 2-Approximation Algorithm for the Semi-matching Problem

• Andrzej Czygrinow
• Michal Hanćkowiak
• Edyta Szymańska
• Wojciech Wawrzyniak
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7611)

## Abstract

In this paper we consider the problem of matching clients with servers, each of which can process a subset of clients. It is known as the semi-matching or load balancing problem in a bipartite graph G = (V,U,E), where U corresponds to the clients, V to the servers, and E is the set of available connections between them. The goal is to find a set of edges M ⊆ E such that every vertex in U is incident to exactly one edge in M. The load of a server v ∈ V is defined as $${d_M(v) +1\choose 2}$$ where d M (v) is the degree of v in M, and the problem is to find an optimal semi-matching, i.e. a semi-matching that minimizes the sum of the loads of the servers. An optimal solution can be found sequentially in polynomial time but the distributed complexity is not well understood. Our algorithm yields $$(1+\frac{1}{\alpha})$$-approximation (where $$\alpha=\max\left\{1, \frac 12\left(\frac{|U|}{|V|} +1\right)\right\}$$) and has time complexity $$O\left(\Delta^5\right),$$ where Δ is the maximum degree of a vertex in V. In particular, for Δ = O(1) it gives constant approximation with constant time complexity. We also give a fast algorithm for the case when Δ is large and the degrees in V and U satisfy some additional properties. Both algorithms are deterministic.

## References

1. 1.
2. 2.
Czygrinow, A., Hanćkowiak, M., Krzywdziński, K., Szymańska, E., Wawrzyniak, W.: Brief Announcement: Distributed Approximations for the Semi-matching Problem. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 200–201. Springer, Heidelberg (2011)
3. 3.
Fakcharoenphol, J., Laekhanukit, B., Nanongkai, D.: Faster Algorithms for Semi-matching Problems (Extended Abstract). In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198, pp. 176–187. Springer, Heidelberg (2010)
4. 4.
Feige, U., Lovasz, L., Tetali, P.: Approximating Min Sum Set Cover. Algorithmica 40(4), 219–234 (2004)
5. 5.
Hanćkowiak, M., Karoński, M., Panconesi, A.: On the distributed complexity of computing maximal matchings. In: Proc. 9th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, San Francisco, CA, USA, pp. 219–225 (January 1998)Google Scholar
6. 6.
Harvey, N.J.A., Ladner, R.E., Lovasz, L., Tamir, T.: Semi-matchings for bipartite graphs and load balancing, J. Algorithms 59(1), 53–78 (2006)
7. 7.
Galčík, F., Katrenič, J., Semanišin, G.: On Computing an Optimal Semi-matching. In: Kolman, P., Kratochvíl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 250–261. Springer, Heidelberg (2011)
8. 8.
Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Computing 21(1), 193–201 (1992)
9. 9.
Lotker, Z., Patt-Shamir, B., Rosén, A.: Distributed Approximate Matching. SIAM J. Comput. 39(2), 445–460 (2009)
10. 10.
Low, C.P.: An approximation algorithm for the load-balanced semi-matching problem in weighted bipartite graphs. Information Processing Letters 100(4), 154–161 (2006)
11. 11.
Peleg, D.: Distributed Algorithms, A Locality-Sensitive Approach. SIAM Press (2000)Google Scholar
12. 12.
Sadagopan, N., Singh, M., Krishnamachari, B.: Decentralized utility-based sensor network design. Mob. Netw. Appl. 11(3), 341–350 (2006)
13. 13.
Suomela, J.: Survey of Local Algorithms (manuscript), http://www.cs.helsinki.fi/u/josuomel/doc/local-survey.pdf

## Authors and Affiliations

• Andrzej Czygrinow
• 1
• Michal Hanćkowiak
• 2
• Edyta Szymańska
• 2
• Wojciech Wawrzyniak
• 2
1. 1.School of Mathematical and Statistical SciencesArizona State UniversityTempeUSA
2. 2.Faculty of Mathematics and Computer ScienceAdam Mickiewicz UniversityPoznańPoland