Advertisement

Dense Subgraphs on Dynamic Networks

  • Atish Das Sarma
  • Ashwin Lall
  • Danupon Nanongkai
  • Amitabh Trehan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7611)

Abstract

In distributed networks, it is often useful for the nodes to be aware of dense subgraphs, e.g., such a dense subgraph could reveal dense substructures in otherwise sparse graphs (e.g. the World Wide Web or social networks); these might reveal community clusters or dense regions for possibly maintaining good communication infrastructure. In this work, we address the problem of self-awareness of nodes in a dynamic network with regards to graph density, i.e., we give distributed algorithms for maintaining dense subgraphs that the member nodes are aware of. The only knowledge that the nodes need is that of the dynamic diameter D, i.e., the maximum number of rounds it takes for a message to traverse the dynamic network. For our work, we consider a model where the number of nodes are fixed, but a powerful adversary can add or remove a limited number of edges from the network at each time step. The communication is by broadcast only and follows the CONGEST model. Our algorithms are continuously executed on the network, and at any time (after some initialization) each node will be aware if it is part (or not) of a particular dense subgraph. We give algorithms that (2 + ε)-approximate the densest subgraph and (3 + ε)-approximate the at-least-k-densest subgraph (for a given parameter k). Our algorithms work for a wide range of parameter values and run in O(Dlog1 + ε n) time. Further, a special case of our results also gives the first fully decentralized approximation algorithms for densest and at-least-k-densest subgraph problems for static distributed graphs.

Keywords

Dynamic Network Dynamic Graph Approximation Guarantee Dense Subgraph Subgraph Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.E.: Local management of a global resource in a communication network. In: FOCS, pp. 347–357. IEEE Computer Society (1987)Google Scholar
  2. 2.
    Aggarwal, S., Kutten, S.: Time Optimal Self-Stabilizing Spanning Tree Algorithms. In: Shyamasundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 400–410. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Andersen, R., Chellapilla, K.: Finding Dense Subgraphs with Size Bounds. In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427, pp. 25–37. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Angluin, D.: Local and global properties in networks of processors (extended abstract). In: Miller, R.E., Ginsburg, S., Burkhard, W.A., Lipton, R.J. (eds.) STOC, pp. 82–93. ACM (1980)Google Scholar
  5. 5.
    Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Discrete Appl. Math. 121(1-3), 15–26 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics. John Wiley & Sons (2004)Google Scholar
  7. 7.
    Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and mapreduce. PVLDB 5(5), 454–465 (2012)Google Scholar
  8. 8.
    Berns, A., Ghosh, S.: Dissecting self-* properties. In: International Conference on Self-Adaptive and Self-Organizing Systems, pp. 10–19 (2009)Google Scholar
  9. 9.
    Bhaskara, A., Charikar, M., Vijayaraghavan, A., Guruswami, V., Zhou, Y.: Polynomial integrality gaps for strong sdp relaxations of densest k-subgraph. In: SODA, pp. 388–405 (2012)Google Scholar
  10. 10.
    Charikar, M.: Greedy Approximation Algorithms for Finding Dense Components in a Graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913, pp. 84–95. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Cidon, I., Shavitt, Y.: Message terminating algorithms for anonymous rings of unknown size. Inf. Process. Lett. 54(2), 111–119 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G., Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed approximation. In: STOC, pp. 363–372 (2011)Google Scholar
  13. 13.
    Das Sarma, A., Lall, A., Nanongkai, D., Trehan, A.: Dense subgraphs on dynamic networks. CoRR abs/1208.1454 (2012)Google Scholar
  14. 14.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974), http://dx.doi.org/10.1145/361179.361202 zbMATHCrossRefGoogle Scholar
  15. 15.
    Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)zbMATHGoogle Scholar
  16. 16.
    Dubhashi, D.P., Grandioni, F., Panconesi, A.: Distributed Algorithms via LP Duality and Randomization. In: Handbook of Approximation Algorithms and Metaheuristics. Chapman and Hall/CRC (2007)Google Scholar
  17. 17.
    Elkin, M.: An overview of distributed approximation. ACM SIGACT News Distributed Computing Column 35(4), 40–57 (2004)CrossRefGoogle Scholar
  18. 18.
    Emek, Y., Korman, A.: New Bounds for the Controller Problem. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 22–34. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  19. 19.
    Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29 (1999)Google Scholar
  20. 20.
    Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their diameter in sublinear time. In: SODA, pp. 1150–1162 (2012)Google Scholar
  21. 21.
    Ghosh, D., Sharman, R., Raghav Rao, H., Upadhyaya, S.: Self-healing systems - survey and synthesis. Decis. Support Syst. 42(4), 2164–2185 (2007)CrossRefGoogle Scholar
  22. 22.
    Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive graphs. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P.Å., Ooi, B.C. (eds.) VLDB, pp. 721–732. ACM (2005)Google Scholar
  23. 23.
    Goldberg, A.V.: Finding a maximum density subgraph. Tech. Rep. UCB/CSD-84-171, EECS Department, University of California, Berkeley (1984)Google Scholar
  24. 24.
    Hayes, T., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure for low stretch under adversarial attack. Distributed Computing, 1–18, http://dx.doi.org/10.1007/s00446-012-0160-1, 10.1007, doi:10.1007/s00446-012-0160-1
  25. 25.
    Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure for low stretch under adversarial attack. In: PODC 2009: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, pp. 121–130. ACM, New York (2009)CrossRefGoogle Scholar
  26. 26.
    Khan, M., Pandurangan, G.: A fast distributed approximation algorithm for minimum spanning trees. Distributed Computing 20, 391–402 (2008)CrossRefGoogle Scholar
  27. 27.
    Khan, M., Kuhn, F., Malkhi, D., Pandurangan, G., Talwar, K.: Efficient distributed approximation algorithms via probabilistic tree embeddings. In: PODC, pp. 263–272 (2008)Google Scholar
  28. 28.
    Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipartite clique. SIAM J. Computing 36(4), 1025–1071 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Khuller, S., Saha, B.: On Finding Dense Subgraphs. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  30. 30.
    Korman, A., Kutten, S.: Controller and estimator for dynamic networks. In: Gupta, I., Wattenhofer, R. (eds.) PODC, pp. 175–184. ACM (2007)Google Scholar
  31. 31.
    Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verification, computation, and fault detection of an MST. In: Gavoille, C., Fraigniaud, P. (eds.) PODC, pp. 311–320. ACM (2011)Google Scholar
  32. 32.
    Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic networks. In: STOC, pp. 513–522 (2010)Google Scholar
  33. 33.
    Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks. In: PODC, pp. 1–10 (2011)Google Scholar
  34. 34.
    Kuhn, F., Schmid, S., Wattenhofer, R.: A Self-repairing Peer-to-Peer System Resilient to Dynamic Adversarial Churn. In: van Renesse, R. (ed.) IPTPS 2005. LNCS, vol. 3640, pp. 13–23. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  35. 35.
    Lawler, E.: Combinatorial optimization - networks and matroids. Holt, Rinehart, and Winston (1976)Google Scholar
  36. 36.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo (1996)zbMATHGoogle Scholar
  37. 37.
    Matias, Y., Afek, Y.: Simple and Efficient Election Algorithms for Anonymous Networks. In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392, pp. 183–194. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  38. 38.
    Nanongkai, D., Das Sarma, A., Pandurangan, G.: A tight unconditional lower bound on distributed randomwalk computation. In: PODC, pp. 257–266 (2011)Google Scholar
  39. 39.
    Pandurangan, G., Khan, M.: Theory of communication networks. In: Algorithms and Theory of Computation Handbook, 2nd edn. CRC Press (2009)Google Scholar
  40. 40.
    Pandurangan, G., Trehan, A.: Xheal: localized self-healing using expanders. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on Principles of Distributed Computing, PODC 2011, pp. 301–310. ACM (2011), http://doi.acm.org/10.1145/1993806.1993865
  41. 41.
    Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Industrial and Applied Mathematics, Philadelphia (2000)Google Scholar
  42. 42.
    Poor, R., Bowman, C., Auburn, C.B.: Self-healing networks. Queue 1, 52–59 (2003), http://doi.acm.org/10.1145/846057.864027 Google Scholar
  43. 43.
    Trehan, A.: Algorithms for self-healing networks. Dissertation, University of New Mexico (2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Atish Das Sarma
    • 1
  • Ashwin Lall
    • 2
  • Danupon Nanongkai
    • 3
    • 4
  • Amitabh Trehan
    • 5
  1. 1.eBay Research LabsSan JoseUSA
  2. 2.Department of Mathematics and Computer ScienceDenison UniversityGranvilleUSA
  3. 3.University of ViennaAustria
  4. 4.Nanyang Technological UniversitySingapore
  5. 5.Information Systems group, Faculty of Industrial Engineering and ManagementTechnion - Israel Institute of TechnologyHaifaIsrael

Personalised recommendations