Fast Distributed Computation in Dynamic Networks via Random Walks

  • Atish Das Sarma
  • Anisur Rahaman Molla
  • Gopal Pandurangan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7611)


The paper investigates efficient distributed computation in dynamic networks in which the network topology changes (arbitrarily) from round to round. Random walks are a fundamental primitive in a wide variety of network applications; the local and lightweight nature of random walks is especially useful for providing uniform and efficient solutions to distributed control of dynamic networks. Given their applicability in dynamic networks, we focus on developing fast distributed algorithms for performing random walks in such networks.

Our first contribution is a rigorous framework for design and analysis of distributed random walk algorithms in dynamic networks. We then develop a fast distributed random walk based algorithm that runs in \(\tilde{O}(\sqrt{\tau \Phi})\) rounds (with high probability), where τ is the dynamic mixing time and Φ is the dynamic diameter of the network respectively, and returns a sample close to a suitably defined stationary distribution of the dynamic network.

Our next contribution is a fast distributed algorithm for the fundamental problem of information dissemination (also called as gossip) in a dynamic network. In gossip, or more generally, k-gossip, there are k pieces of information (or tokens) that are initially present in some nodes and the problem is to disseminate the k tokens to all nodes. We present a random-walk based algorithm that runs in \(\tilde{O}(\min\{n^{1/3}k^{2/3}(\tau \Phi)^{1/3}, nk\})\) rounds (with high probability). To the best of our knowledge, this is the first o(nk)-time fully-distributed token forwarding algorithm that improves over the previous-best O(nk) round distributed algorithm [Kuhn et al., STOC 2010], although in an oblivious adversary model.


Dynamic Network Distributed Algorithm Random walks Random sampling Information Dissemination Gossip 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random walks are faster than one. In: SPAA, pp. 119–128 (2008)Google Scholar
  2. 2.
    Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and efficient computation in dynamic peer-to-peer networks. In: SODA (2012)Google Scholar
  3. 3.
    Avin, C., Koucký, M., Lotker, Z.: How to Explore a Fast-Changing World (Cover Time of a Simple Random Walk on Evolving Graphs). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. In: PODC, pp. 260–269 (2009)Google Scholar
  5. 5.
    Berenbrink, P., Czyzowicz, J., Elsässer, R., Gąsieniec, L.: Efficient Information Exchange in the Random Phone-Call Model. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 127–138. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Bui, M., Bernard, T., Sohier, D., Bui, A.: Random Walks in Distributed Computing: A Survey. In: Böhme, T., Larios Rosillo, V.M., Unger, H., Unger, H. (eds.) IICS 2004. LNCS, vol. 3473, pp. 1–14. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs and dynamic networks. CoRR, abs/1012.0009 (2010)Google Scholar
  8. 8.
    Clementi, A., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-markovian dynamic graphs. In: PODC, pp. 213–222 (2008)Google Scholar
  9. 9.
    Clementi, A., Silvestri, R., Trevisan, L.: Information spreading in dynamic graphs. In: PODC (2012)Google Scholar
  10. 10.
    Das Sarma, A., Molla, A., Pandurangan, G.: Fast Distributed Computation in Dynamic Networks via Random Walks (May 2012),
  11. 11.
    Das Sarma, A., Nanongkai, D., Pandurangan, G.: Fast distributed random walks. In: PODC (2009)Google Scholar
  12. 12.
    Das Sarma, A., Nanongkai, D., Pandurangan, G., Tetali, P.: Efficient distributed random walks with applications. In: PODC, pp. 201–210 (2010)Google Scholar
  13. 13.
    Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z.: Information spreading in dynamic networks. CoRR, abs/1112.0384 (2011)Google Scholar
  14. 14.
    Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: STOC (2010)Google Scholar
  15. 15.
    Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks. In: PODC, pp. 1–10 (2011)Google Scholar
  16. 16.
    Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo (1996)zbMATHGoogle Scholar
  17. 17.
    Lyons, R.: Asymptotic enumeration of spanning trees. Combinatorics, Probability & Computing 14(4), 491–522 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Nanongkai, D., Das Sarma, A., Pandurangan, G.: A tight unconditional lower bound on distributed randomwalk computation. In: PODC, pp. 257–266 (2011)Google Scholar
  19. 19.
    Pandurangan, G., Khan, M.: Theory of communication networks. In: Algorithms and Theory of Computation Handbook, 2nd edn. CRC Press (2009)Google Scholar
  20. 20.
    Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter peer-to-peer networks. In: FOCS (2001)Google Scholar
  21. 21.
    Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM, Philadelphia (2000)zbMATHCrossRefGoogle Scholar
  22. 22.
    Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, UK (1994)zbMATHCrossRefGoogle Scholar
  23. 23.
    Zhong, M., Shen, K.: Random walk based node sampling in self-organizing networks. Operating Systems Review 40(3), 49–55 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Atish Das Sarma
    • 1
  • Anisur Rahaman Molla
    • 2
  • Gopal Pandurangan
    • 2
    • 3
  1. 1.eBay Research LabseBay Inc.USA
  2. 2.Division of Mathematical SciencesNanyang Technological UniversitySingapore
  3. 3.Department of Computer ScienceBrown UniversityProvidenceUSA

Personalised recommendations