Discovering Hierarchical Relationships in Educational Content

  • Marián Šimko
  • Mária Bieliková
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7558)


Adaptive educational hypermedia necessitate semantic description of a domain, which is used by an adaptive engine to perform adaptation to a learner. The bottleneck of adaptive hypermedia is manual authoring of such semantic description performed by a domain expert mainly due to the amount of descriptions to be created. In this paper we present a method for automated discovery of is-a relationship, one of the most important relationships of conceptual structures. The method leverages specifics of educational content. The evaluation shows reasonable accuracy of discovered relationships reflecting in reduced domain expert’s efforts in domain model creation.


adaptive hypermedia domain model semantics discovery automatic relationship discovery natural language processing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bisson, G., Nedellec, C., Canamero, L.: Designing clustering methods for ontology building: The Mo’K Workbench. In: Proc. of the First Workshop on Ontology Learning, OL 2000. CEUR-WS, vol. 31, pp. 13–19 (2000)Google Scholar
  2. 2.
    Brusilovsky, P., Knapp, J., Gamper, J.: Supporting teachers as content authors in intelligent educational systems. Int. Journal of Knowledge and Learning 2(3/4), 191–215 (2006)CrossRefGoogle Scholar
  3. 3.
    Cimiano, P.: Ontology Learning and Population from Text: Algorithms, Evaluation and Applications. Springer (2006) ISBN: 978-0-387-30632-2Google Scholar
  4. 4.
    Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using formal concept analysis. J. of Artificial Intelligence Research. 24, 305–339 (2005)zbMATHGoogle Scholar
  5. 5.
    Cristea, A.I., de Mooij, A.: Designer Adaptation in Adaptive Hypermedia Authoring. In: Proc. of the Int. Conf. on Information Technology: Computers and Communications ITCC 2003, pp. 444–448. IEEE (2003)Google Scholar
  6. 6.
    Fotzo, H.N., Gallinari, P.: Learning generalization/specialization relations between concepts: application for automatically building thematic document hierarchies. In: Proc. of the 7th Conf. on Computer-Assisted Inf. Retr., CID, pp. 143–155 (2004)Google Scholar
  7. 7.
    Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Proc. of the 14th Int. Conf. on Computational Linguistics, pp. 539–545. ACL (1992)Google Scholar
  8. 8.
    Henze, N., Nejdl, W.: A Logical Characterization of Adaptive Educational Hyper-media. New Review of Hypermedia and Multimedia 10(1), 77–113 (2004)CrossRefGoogle Scholar
  9. 9.
    Maedche, A., Staab, S.: Measuring Similarity between Ontologies. In: Gómez-Pérez, A., Benjamins, V.R. (eds.) EKAW 2002. LNCS (LNAI), vol. 2473, pp. 251–263. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Sosnovsky, S., Brusilovsky, P., Yudelson, M.: Supporting Adaptive Hypermedia Authors with Automated Content Indexing. In: Proc. of 2nd Int. Workshop on Authoring of Adaptive and Adaptable Educ. Hypermedia, pp. 380–389 (2004)Google Scholar
  11. 11.
    Šaloun, P., Velart, Z., Klimanek, P.: Semiautomatic domain model building from text-data. In: Proc. of Sixth Int. Workshop on Semantic Media Adaptation and Personalization SMAP 2011, pp. 15–20. IEEE Computer Society (2011)Google Scholar
  12. 12.
    Šimko, M., Bieliková, M.: Automatic Concept Relationships Discovery for an Adaptive E-course. In: Barnes, T., Desmarais, M., Romero, C., Ventura, S. (eds.) Proc. of 2nd Int. Conf. on Educational Data Mining, EDM 2009, pp. 171–179 (2009)Google Scholar
  13. 13.
    Šimko, M., Bieliková, M.: Automated Educational Course Metadata Generation Based on Semantics Discovery. In: Cress, U., Dimitrova, V., Specht, M. (eds.) EC-TEL 2009. LNCS, vol. 5794, pp. 99–105. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Šimko, M., Barla, M., Bieliková, M.: ALEF: A Framework for Adaptive Web-Based Learning 2.0. In: Reynolds, N., Turcsányi-Szabó, M. (eds.) KCKS 2010. IFIP AICT, vol. 324, pp. 367–378. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    Tvarožek, J.: Bootstrapping a Socially Intelligent Tutoring. Information Sciences and Technologies Bulletin of the ACM Slovakia 3(1), 33–41 (2011)Google Scholar
  16. 16.
    Zouaq, A., Nkambou, R.: Building Domain Ontologies from Text for Educational Purposes. IEEE Trans. Learn. Technol. 1(1), 49–62 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Marián Šimko
    • 1
  • Mária Bieliková
    • 1
  1. 1.Institute of Informatics and Software Engineering, Faculty of Informatics and Information TechnologiesSlovak University of Technology in BratislavaBratislavaSlovakia

Personalised recommendations