Skip to main content

Biological Control of Pathogens and Plant Growth Promotion Potential of Fluorescent Pseudomonads

  • Chapter
  • First Online:

Abstract

Flourescent pseudomonad bacteria are the most diversified group of rhizobacteria. They occur in temperate as well as tropical soils and are predominant among bacteria associated with plant rhizospheres. Due to their innate traits such as plant growth-promoting ability, broad spectrum antagonism against phytopathogens, biofertilising capability and colonising potential, fluorescent pseudomonad bacteria have been used as biocontrol inoculants in agricultural fields to suppress pathogens, to enhance and subsequently to promote total crop yield.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(Suppl 2):173–81

    Article  PubMed  CAS  Google Scholar 

  • Alstrom S (1991) Induction of disease resistance in common bean susceptible to halo blight bacterial pathogen after seed bacterization with rhizosphere pseudomonads. J Gen Appl Microbiol 37:495–501

    Article  Google Scholar 

  • Alstrom S (1995) Evidence of disease resistance induced by rhizosphere pseudomonad against Pseudomonas syringae pv. phaseolicola. J Gen Appl Microbiol 41:315–325

    Article  CAS  Google Scholar 

  • Al-Taweil HI, Osman MB, Hamid AA, Wan Yusouff WM (2009) Development of microbial inoculants and the impact of soil application on rice seedling growth. Am J Agric Biol Sci 4(1):79–82

    Article  Google Scholar 

  • Andrade G, Azcdn R, Bethlenfalvay GJ (1995) A rhizobacterium modifies plant and soil responses to the mycorrhizal fungus Glomusmossae. Appl Soil Ecol 2:195–202

    Article  Google Scholar 

  • Andrade G, DeLeij FA, Lynch JM (1998) Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea. Lett Appl Microbiol 26:311–316

    Article  Google Scholar 

  • Anjaiah V, Koedam N, Nowak-Thompson B, Loper JE, Hofte M, Tambong JT, Cornelis P (1998) Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivatives toward Fusarium spp. and Pythium spp. Mol Plant Microbe Interact 11:847–854

    Article  CAS  Google Scholar 

  • Anjaiah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biological control of fusarium wilts in pigeonpea and chickpea by Pseudomonas aeruginosa PNA1. Can J Microbiol 49:85–91

    Article  PubMed  CAS  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Hofte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin, and pyocyanin. Mol Plant Microbe Interact 15:1147–1156

    Article  PubMed  CAS  Google Scholar 

  • Ayyadurai N, Ravindra Naik P, Sreehari Rao M, Sunish Kumar R, Samrat SK, Manohar M, Sakthivel N (2006) Isolation and characterization of a novel banana rhizosphere bacterium as fungal antagonist and microbial adjuvant in micropropagation of banana. J Appl Microbiol 100:926–937

    Article  PubMed  CAS  Google Scholar 

  • Ayyadurai N, Ravindra Naik P, Sakthivel N (2007) Functional characterization of antagonistic fluorescent pseudomonads associated with rhizospheric soil of rice (Oryza sativa L.). J Microbiol Biotechnol 17:919–927

    PubMed  CAS  Google Scholar 

  • Babalola OO, Berner DK, Amusa NA (2007a) Evaluation of some bacterial isolates as germination stimulants of Striga hermonthica. Afr J Agric Res 2(1):27–30

    Google Scholar 

  • Babalola OO, Sanni AI, Odhiambo GD, Torto B (2007b) Plant growth-promoting rhizobacteria do not pose any deleterious effect on cowpea and detectable amounts of ethylene are produced. World J Microbiol Biotechnol 23(6):747–752

    Article  Google Scholar 

  • Bagnasco P, De La Fuente L, Gaultieri G, Noya F, Arias A (1998) Fluorescent Pseudomonas spp. as biocontrol agents against forage legume root pathogenic fungi. Soil Biol Biochem 30:1317–1323

    Article  CAS  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97:239–243

    Article  PubMed  Google Scholar 

  • Ballard RW, Doudoroff M, Stanier R, Mandel M (1968) Taxonomy of the aerobic Pseudomonads: Pseudomonas diminuta and P. vesiculare. J Gen Microbiol 53:349–361

    PubMed  CAS  Google Scholar 

  • Bano N, Musarrat J (2003) Characterization of a new Pseudomonas aeruginosa strain NJ-15 as a potential biocontrol agent. Curr Microbiol 46:324–328

    Article  PubMed  CAS  Google Scholar 

  • Barbhaiya HB, Rao KK (1985) Production of pyoverdine, the fluorescent pigment of Pseudomonas aeruginosa PAO1. FEMS Microbiol Lett 27:233–235

    Article  CAS  Google Scholar 

  • Baron SS, Teranova G, Rowe JJ (1997) Molecular mechanism of the antimicrobial action of pyocyanin. Curr Microbiol 18:223–230

    Article  CAS  Google Scholar 

  • Belimov AA, Safronova VI, Sergeyeva TA, Matveyeva VA, Egorova TN, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652

    Article  PubMed  CAS  Google Scholar 

  • Beraha L, Wisniewski V, Garber ED (1983) Avirulence and reduced extracellular enzyme activity in Geotrichum candidum. Bot Gaz 144:461–465

    Article  CAS  Google Scholar 

  • Berti AD, Thomas MG (2009) Analysis of achromobactin biosynthesis by Pseudomonas syringae pv. syringae B728a. J Bacteriol 191:4594–4604

    Article  PubMed  CAS  Google Scholar 

  • Bertrand H, Nalin R, Bally R, Cleyet-Marel JC (2001) Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola Brassica napus. Biol Fertil Soils 33:152–156

    Article  Google Scholar 

  • Blumer C, Haas D (2000) Mechanism, regulation, and ecological role of bacterial cyanide biosynthesis. Arch Microbiol 173:170–177

    Article  PubMed  CAS  Google Scholar 

  • Budzikiewicz H (1993) Secondary metabolites from fluorescent pseudomonads. FEMS Microbiol Rev 104:209–228

    Article  CAS  Google Scholar 

  • Budzikiewicz H (1997) Siderophores of fluorescent pseudomonads. Z Naturforsch 52:713–720

    CAS  Google Scholar 

  • Bultreys A, Gheysen I, Maraite H, de Hoffmann E (2001) Characterization of fluorescent and non fluorescent peptide siderophores produced by Pseudomonas syringae strains and their potential use in strain identification. Appl Environ Microbiol 67:1718–1727

    Article  PubMed  CAS  Google Scholar 

  • Burr TJ, Schroth MN, Suslow T (1978) Increased potato yields by treatment of seed pieces with specific strains of Pseudomonas fluorescens and P. putida. Phytopathology 68:1377–1383

    Article  Google Scholar 

  • Buysens S, Poppe J, Hofte M (1994) Role of siderophores in plant growth stimulation and antagonism by Pseudomonas aeruginosa 7NSK2. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. CSIRO, Adelaide, pp 139–141

    Google Scholar 

  • Buysens S, Heungens K, Poppe J, Hofte M (1996) Involvement of pyochelin and pyoverdine in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7NSK2. Appl Environ Microbiol 62:865–871

    PubMed  CAS  Google Scholar 

  • Capper AL, Higgins KP (1993) Application of Pseudomonas fluorescens isolates to wheat as potential biological control agents against Take-all. Plant Pathol 42:560–567

    Article  Google Scholar 

  • Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by Pseudomonas cepacia, strain 5.5B, a biocontrol agent of Rhizoctonia solani. Appl Microbiol Biotechnol 43:211–216

    Article  CAS  Google Scholar 

  • Cattelan AJ, Hartel PG, Fuhrmann FF (1999) Screening for plant growth promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680

    Article  CAS  Google Scholar 

  • Chakrabarty AM, Roy SC (1964) Effects of trace elements on the production of pigments by a pseudomonad. Biochem J 93:228–231

    PubMed  CAS  Google Scholar 

  • Chatterjee A, Valasubramanian R, Vachani A, Mau WL, Gnanamanickam SS, Chatterjee AK (1996) Biological control of rice diseases with Pseudomonas fluorescens 7–14: isolation of ant mutants altered in antibiotic production, cloning of ant+ DNA and an evaluation of a role for antibiotic production in the control of blast and sheath blight. Biol Control 7:185–195

    Article  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Van der Bij AJ, Van der Drift KMGM, Schripse-ma J, Kroon B, Scheffer RJ, Keel C, Bakker PAHM, Tichy H, de Bruijn FJ, Thomas-Oates JE, Lugtenberg BJJ (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis-lycopersici. Mol Plant Microbe Interact 11:1069–1077

    Article  CAS  Google Scholar 

  • Cox CD, Rinehart KL, Moore ML, Cook JC (1981) Pyochelin: novel structure of an iron chelating growth promoter for Pseudomonas aeruginosa. Proc Natl Acad Sci USA 78:4256–4260

    Article  PubMed  CAS  Google Scholar 

  • Dazzo FB, Truchet GL, Hollingsworth RI, Hrabak EM, Pankratz HS, Philip-Hollingsworth S, Salzwedel JL, Chapman K, Appenzeller L, Squartini A, Gerhold D, Orgambide G (1991) Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs. J Bacteriol 173:5371–5384

    PubMed  CAS  Google Scholar 

  • de Bruijn I, de Kock MJD, de Waard P, Van Beek TA, Raaijmakers JM (2008) Massetolide A biosynthesis in Pseudomonas fluorescens. J Bacteriol 190(8):2777–2789

    Article  PubMed  CAS  Google Scholar 

  • De Freitas JR, Germida JJ (1990) Plant growth promoting rhizobacteria for winter wheat. Can J Microbiol 36:265–272

    Article  Google Scholar 

  • De Freitas JR, Germida JJ (1991) Pseudomonas cepacia and Pseudomonas putida as winter wheat inoculants for biocontrol of Rhizoctonia solani. Can J Microbiol 37:780–784

    Article  Google Scholar 

  • De Freitas JR, Germida JJ (1992a) Growth promotion of winter wheat by fluorescent pseudomonads under growth chamber conditions. Soil Biol Biochem 24:1127–1135

    Article  Google Scholar 

  • De Freitas JR, Germida JJ (1992b) Growth promotion of winter wheat by fluorescent pseudomonads under field conditions. Soil Biol Biochem 24:1137–1146

    Article  Google Scholar 

  • de Silva A, Patterson K, Rothrock C, Moore J (2000) Growth promotion of highbush blueberry by fungal and bacterial inoculants. Hortic Sci 35:1228–1230

    Google Scholar 

  • de Souza JT, Raaijmakers JM (2003) Polymorphisms within the prnD and pltC genes from pyrrolnitrin and pyoluteorin-producing Pseudomonas and Burkholderia spp. FEMS Microbiol Ecol 43:21–34

    Article  PubMed  Google Scholar 

  • de Vos P, Kersters K, Falsen E, Pot B, Gillis M, Segers P, De Ley J (1985) Comamonas Davis and Park 1962 gen. nov. nom. rev. emend and Comamonas terrigena Hugh 1962 sp. nov. nom. rev. Int J Syst Bacteriol 35:443–453

    Article  Google Scholar 

  • den Dooren de Jong LE (1926) Bijdrage tot de kennis van het mineralisatieproces. Dissertation. Technische Hogeschool, Delft. Nijgh and van Ditmar, Rotterdam, the Netherlands

    Google Scholar 

  • Dey KB (1998) Phosphate solubilizing organisms in improving fertility status. In: Sen SP, Palit P (eds) Biofertilizers: potentialities and problems. Plant Physiology Forum, Naya Prokash, Calcutta, pp 237–248

    Google Scholar 

  • Dong X, Mindrinos M, Davis KR, Ausubel FM (1991) Induction of Arabidopsis defense genes by virulent and avirulent Pseudomonas syringae strains and by a cloned avirulence gene. Plant Cell 3:61–72

    PubMed  CAS  Google Scholar 

  • Doudoroff M, Palleroni NJ (1974) Genus I. Pseudomonas migula. 1894. Addendum IV. In: Bergey’s manual of determinative bacteriology. Williams and Wilkins, Baltimore, MD, pp 241–242

    Google Scholar 

  • Ederer GM, Matsen JM (1972) Colonization and infection with Pseudomonas cepacia. J Infect Dis 125:613–618

    Article  PubMed  CAS  Google Scholar 

  • Elad Y, Chet I (1987) Possible role of competition for nutrients in biocontrol of Pythium damping-off by bacteria. Phytopathology 77:190–195

    Article  Google Scholar 

  • Elander RP, Mabe JA, Hamill RH, Gorman M (1968) Metabolism of tryptophans by Pseudomonas aureofaciens VI. Production of pyrrolnitrin by selected Pseudomonas species. Appl Microbiol 16:753–758

    PubMed  CAS  Google Scholar 

  • El-Sayed AK, Hothersall J, Cooper SM, Stephens E, Simpson TJ, Thomas CM (2003) Characterization of the mupirocin biosynthesis gene cluster from Pseudomonas fluorescens NCIMB 10586. Chem Biol 10:410–430

    Article  Google Scholar 

  • Fages J (1992) An industrial view of Azospirillum inoculants: formulation and application technology. Symbiosis 13:15–26

    Google Scholar 

  • Flaishman M, Eyal Z, Voisard C, Haas D (1990) Suppression of Septoria triticii by phenazine or siderophore-deficient mutants of Pseudomonas. Curr Microbiol 20:121–124

    Article  CAS  Google Scholar 

  • Foster RC (1988) Microenvironments of soil microorganisms. Biol Fertil Soils 6:189–203

    Article  Google Scholar 

  • Franza T, Mahe B, Expert D (2005) Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol 55:261–275

    Article  PubMed  CAS  Google Scholar 

  • Friedlender M, Inbar J, Chet I (1993) Biological control of soilborne plant pathogens by a β-1,3-glucanase-producing Pseudomonas cepacia. Soil Biol Biochem 25:1211–1221

    Article  Google Scholar 

  • Frommel MI, Nowak J, Lazarovitis G (1991) Growth enhancement and developmental modifications of in vitro grown potato Solanum tuberosum ssp. tuberosum. Plant Physiol 96:928–936

    Article  PubMed  CAS  Google Scholar 

  • Frommel MI, Nowak J, Lazarovitis G (1993) Treatment of potato tubers with a growth promoting Pseudomonas sp.: plant growth responses and bacterium distribution in the rhizosphere. Plant Soil 150:51–60

    Article  Google Scholar 

  • Gagne S, Dehbi L, Le Quere D, Cayer F, Morin J, Lemay R, Fournier N (1993) Increase of greenhouse tomato fruit yields by plant growth-promoting rhizobacteria PGPR inoculated into the peat-based growing media. Soil Biol Biochem 25:269–272

    Article  Google Scholar 

  • Galli E, Barbieri P, Bestetti G (1992) Potential of pseudomonads in the degradation of methylbenzenes. In: Galli E, Silver S, Witholt B (eds) Pseudomonas: molecular biology and biotechnology. American Society for Microbiology, Washington, DC, pp 268–276

    Google Scholar 

  • Gamble TN, Betlach MR, Tiedje JM (1977) Numerically dominant denitrifying bacteria from world soils. Appl Environ Microbiol 33:926

    PubMed  CAS  Google Scholar 

  • Garcia de Salamone IE, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411

    Article  PubMed  CAS  Google Scholar 

  • Geels FP, Lamers JG, Hoekstra O, Schippers B (1986) Potato plant response to seed tuber bacterization in the field in various rotations. Neth J Plant Pathol 92:257–272

    Article  Google Scholar 

  • Georgakopoulos DG, Hendson M, Panopoulos NJ, Schroth MN (1994) Analysis and expression of a phenazine biosynthesis locus of Pseudomonas aureofaciens PGS12 on seeds with a mutant carrying a phenazine biosynthesis locus-ice nucleation reporter gene fusion. Appl Environ Microbiol 60:4573–4579

    PubMed  CAS  Google Scholar 

  • Georgia FR, Poe CP (1931) Study of bacterial fluorescence in various media. 1. Inorganic substances necessary for bacterial fluorescence. J Bacteriol 22:349–361

    PubMed  CAS  Google Scholar 

  • Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett, Boston, MA, p 234

    Google Scholar 

  • Gnanamanickam SS, Mew TW (1992) Biological control of blast disease of rice (Oryza sativa L.) with antagonistic bacteria and its mediation by a Pseudomonas antibiotic. Ann Phytopathol Soc Jpn 58:380–385

    Article  Google Scholar 

  • Graham TL, Sequeira L, Huang TSR (1977) Bacterial lipopolysaccharides as inducers of disease resistance in tobacco. Appl Environ Microbiol 34:424–432

    PubMed  CAS  Google Scholar 

  • Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ (1986) Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob Agents Chemother 29:488–495

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez-Manero FJ, Ramos B, Probanza A, Mehouachi J, Talon M (2001) The plant growth promoting rhizobacteria Bacillus pumilus and Bacillus licheniformis produce high amounts of physiologically active gibberellins. Physiol Plant 111:206–211

    Article  Google Scholar 

  • Gutterson N, Layton TJ, Ziegle JS, Warren GJ (1986) Molecular cloning of genetic determinants for inhibition of fungal grwoth by a fluorescent pseudomonad. J Bacteriol 165:696–703

    PubMed  CAS  Google Scholar 

  • Gutterson MB, Ziegle JS, Warren CJ, Layton TL (1988) Genetic determinants for catabolic induction of antibiotic biosynthesis in Pseudomonas fluorescens HV37a. J Bacteriol 170:380–385

    PubMed  CAS  Google Scholar 

  • Hall JA, Peirson D, Ghosh S, Glick BR (1996) Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr J Plant Sci 44:37–42

    Google Scholar 

  • Hashimoto M, Hattori K (1966a) Oxypyrrolnitrin:a metabolite of Pseudomonas. Chem Pharm Bull 14:1314–1316

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Hattori K (1966b) Isopyrrolnitrin: a metabolite from Pseudomonas. Bull Chem Soc Jpn 39:410

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto M, Hattori K (1968) A new metabolite from Pseudomonas pyrrolnitrica. Chem Pharm Bull 16:1144

    PubMed  CAS  Google Scholar 

  • Hoffland E, Hakulinen J, Van Pelt JA (1996) Comparison of systemic resistance induced by avirulent and nonpathogenic Pseudomonas species. Phytopathology 86:757–762

    Article  Google Scholar 

  • Hoffmann-Hergarten S, Gulati MK, Sikora RA (1998) Yield response and biological control of Meloidogyne incognita on lettuce and tomato with rhizobacteria. J Plant Dis Protect 105:349–358

    Google Scholar 

  • Homma Y, Suzui T (1989) Role of antibiotic production in suppression of radish damping-off by seed bacterization with Pseudomonas cepacia. Ann Phytopathol Soc Jpn 55:643–652

    Article  CAS  Google Scholar 

  • Howell CR, Stipanovic RD (1979) Control of Rhizoctonia solani on cotton seedlings with Pseudomonas fluorescens with an antibiotic produced by the bacterium. Phytopathology 69:480–482

    Article  CAS  Google Scholar 

  • Howie WJ, Echandi E (1983) Rhizobacteria: Influence of cultivar and soil type on plant growth and yield of potato. Soil Biol Biochem 15:127–132

    Article  Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHAO. Mol Plant Microbe Interact 16:851–858

    Article  PubMed  CAS  Google Scholar 

  • Ingham JL (1972) Phytoalexins and other natural products as factors in plant disease. Bot Rev 38:343–424

    Article  CAS  Google Scholar 

  • Iswandi A, Bossier P, Vandenbeele J, Verstraete W (1987) Effect of seed inoculation with the rhizopseudomonad strain 7NSK2 on the root microbiota of maize Zea mays and barley Hordeum vulgare. Biol Fertil Soils 3:153–158

    Article  Google Scholar 

  • Jackson MB (1993) Are plant hormones involved in root to shoot communication. Adv Bot Res 19:103–187

    Article  CAS  Google Scholar 

  • James DW, Gutterson NI (1986) Multiple antibiotics produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose. Appl Environ Microbiol 52:1183–1189

    PubMed  CAS  Google Scholar 

  • Jha BK, Pragash MG, Cletus J, Raman G, Sakthivel N (2009) Simultaneous phosphate solubilisation potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol 25:573–581

    Article  CAS  Google Scholar 

  • Johansson PM, Johnsson L, Gerhardson B (2003) Supression of wheat-seedling diseases caused by Fusarium culmorum and Microdochium nivale using bacterial seed treatment. Plant Pathol 52:219–227

    Article  Google Scholar 

  • Jones AM, Lindow SE, Wildermuth MC (2007) Salicylic acid, yersiniabactin, and pyoverdin production by the model phyto-pathogen Pseudomonas syringae pv. tomato DC3000: synthesis, regulation, and impact on tomato and Arabidopsis host plants. J Bacteriol 189:6773–6786

    Article  PubMed  CAS  Google Scholar 

  • Kavino M, Harish S, Kumar N, Saravanakumar D, Damodaran T, Soorianathasundaram K (2007) Rhizosphere and endophytic bacteria for induction of systemic resistance of banana plantlets against bunchy top virus. Soil Biol Biochem 39:1087–1098

    Article  CAS  Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahr G, Défago G (1989) Iron sufficiency, a prerequisite for suppression of tobacco black root rot by Pseudomonas fluorescens strain CHAO under gnotobiotic conditions. Phytopathology 79:584–589

    Article  Google Scholar 

  • Keel C, Wirthner P, Oberhansli T, Voisard C, Burger U, Haas D, Defago G (1990) Pseudomonads as antagonists of plant pathogens in the rhizosphere: role of the antibiotic 2,4-diacetylphloroglucinol in the suppression of black root rot of tobacco. Symbiosis 9:327–341

    CAS  Google Scholar 

  • Keel C, Schnider U, Maurhofer M, Voisard C, Laville J, Burger U, Wirthner P, Haas D, Defago G (1992) Suppression of root diseases by Pseudomonas fluorescens CHAO: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol Plant Microbe Interact 5:4–13

    Article  CAS  Google Scholar 

  • Khan NI, Schisler DA, Boehm MJ, Lipps PE, Slininger PJ (2004) Field testing of antagonists of Fusarium head blight incited by Gibberella Zeae. Biol Control 29:245–255

    Article  Google Scholar 

  • Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ, Lanahan M, van Pee KH, Ligon JM (1998) Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J Bacteriol 180:1939–1943

    PubMed  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980a) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Schoth MN, Miller TD (1980b) Effects of rhizosphere colonization by plant growth-promoting rhizobacteria on potato plant development and yield. Phytopathology 70:1078–1082

    Article  Google Scholar 

  • Kloepper JW, Hume DJ, Scher FM, Singleton C, Tipping B, Laliberte M, Frauley K, Kutchaw T, Simonson C, Lifshitz R, Zaleska I, Lee L (1988) Plant growth-promoting rhizobacteria on canola rapeseed. Plant Dis 72:42–46

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kraus J, Loper JE (1995) Characterization of a genomic region required for production of the antibiotic pyoluterin by the biological control agent Pseudomonas fluorescens Pf5. Appl Environ Microbiol 61:849–854

    PubMed  CAS  Google Scholar 

  • Krishnamurthy K, Gnanamanickam SS (1997) Biological control of sheath blight of rice: Induction of systemic resistance in rice by plant-associated Pseudomonas spp. Curr Sci 72:331–334

    Google Scholar 

  • Kropp BR, Thomas E, Pounder JI, Anderson AJ (1996) Increased emergence of spring wheat after inoculation with Pseudomonas chlororaphis isolate 2E3 under field and laboratory conditions. Biol Fertil Soil 23:200–206

    Article  CAS  Google Scholar 

  • Kumar KV, Srivastava S, Singh N, Behl HM (2009) Role of metal resistant plant growth promoting bacteria in ameliorating fly ash to the growth of Brassica juncea. J Hazard Mater 170:51–57

    Article  PubMed  CAS  Google Scholar 

  • Lalande R, Bissonette N, Coutlée D, Antoun H (1989) Identification of rhizobacteria from maize and determination of the plant-growth promoting potential. Plant Soil 115:7–11

    Article  Google Scholar 

  • Lamont IL, Martin LW (2003) Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology 149:833–842

    Article  PubMed  CAS  Google Scholar 

  • Lavania M, Chauhan PS, Chauhan SVS, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth-promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52:363–368

    Article  PubMed  CAS  Google Scholar 

  • Lee JY, Song SH (2007) Evaluation of groundwater quality in coastal areas: implications for sustainable agriculture. Environ Geol 52(7):1231–1242

    Article  CAS  Google Scholar 

  • Leeman M, Van Pelt JA, Den Ouden FM, Heinsbroek M, Bakker PAHM, Schippers B (1995) Induction of systemic resistance against Fusarium wilt of radish by lipopolysaccharides of Pseudomonas fluorescens. Phytopathology 85:1021–1027

    Article  CAS  Google Scholar 

  • Leeman M, Den Ouden FM, Van Pelt JA, Dirkx FPM, Steijl H, Bakker PAHM, Schippers B (1996) Iron availability affects induction of systemic resistance to Fusarium wilt of radish in commercial greenhouse trials by seed treatment with Pseudomonas fluorescens WCS374. Phytopathology 85:149–150

    Article  Google Scholar 

  • Lenhoff HM (1963) An inverse relationship of the effects of oxygen and iron on the production of fluorescein and cytochrome C by Pseudomonas fluorescens. Nature 199:601–602

    Article  PubMed  CAS  Google Scholar 

  • Lenhoff HM, Nicholas DJD, Kaplan NO (1956) Effects of oxygen, iron and molybdenum on routes of electron transfer in Pseudomonas fluorescens. J Biol Chem 220:983–995

    PubMed  CAS  Google Scholar 

  • Levy E, Gough FJ, Berlin DK, Guiana PW, Smith JT (1992) Inhibition of Septoria tritici and other phytopathogenic fungi and bacteria by Pseudomonas fluorescens and its antibiotics. Plant Pathol 41:335–341

    Article  CAS  Google Scholar 

  • Lewis TA, Cortese MS, Sebat JL, Green TL, Crawford RL, Lee CH (2000) A Pseudomonas stutzeri gene cluster encoding biosynthesis of the CCl4-dechlorination agent pyridine-2, 6-bis (thiocarboxylic acid). Environ Microbiol 2:407–416

    Article  PubMed  CAS  Google Scholar 

  • Li DM, Alexander A (1988) Co-inoculation with antibiotic-producing bacteria to increase colonization and nodulation by rhizobia. Plant Soil 108:211–219

    Article  Google Scholar 

  • Lifshitz R, Kloepper JW, Kozlowski M, Simonson C, Tipping EM, Zaleska I (1987) Growth promotion of canola rapeseed seedlings by a strain of Pseudomonas putida under gnototropic conditions. Can J Microbiol 23:390–395

    Article  Google Scholar 

  • Ligon JM, Hill DS, Hammer PE, Torkewitz NR, Hofmann D, Kempf HJ, van Pee KH (2000) Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manage Sci 56:688–695

    Article  CAS  Google Scholar 

  • Lim H, Kim Y, Kim S (1991) Pseudomonas stutzeri YLP-1 genetic transformation and antifungal mechanism against Fusarium solani, an agent of plant root rot. Appl Environ Microbiol 57:510–516

    PubMed  CAS  Google Scholar 

  • Loper JE, Paulsen I, Bruck DJ, Pechy-Tarr M, Keel C, Gross H (2008) Genomics of secondary metabolite production by Pseudomonas fluorescens Pf-5. Phytopathology 98(6S):94

    Google Scholar 

  • Lopper JE (1988) Role of fluorescent siderophore production in biological control of Pythium ultimum by a Pseudomonas fluorescens strain. Phytopathology 78:166–172

    Article  Google Scholar 

  • Malathi P, Viswanathan R, Padmanaban P, Mohanraj D, Ramesh Sundar A (2002) Microbial detoxification of Colletotrichum falcatum toxin. Curr Sci 83:6

    Google Scholar 

  • Marek-Kozaczuk M, Skorupska A (2001) Production of B-group vitamins by plant growth-promoting Pseudomonas fluorescens strain 267 and the importance of vitamins in the colonization and nodulation of red clover. Biol Fertil Soils 33:146–151

    Article  CAS  Google Scholar 

  • Martin FN, Loper JE (1999) Soilborne plant diseases caused by Pythium spp.: ecology, epidemiology, and prospects for biological control. Crit Rev Plant Sci 18:111–181

    Article  CAS  Google Scholar 

  • Mathiyazhagan K, Sankarasubramanian H, Neelakandan K, Duraisamy S, Ramasamy S (2008) Induction of systemic resistance in banana (Musa spp.) against Banana bunchy top virus (BBTV) by combining chitin with root-colonizing Pseudomonas fluorescens strain CHAO. Eur J Plant Pathol 120(4):353–362

    Article  CAS  Google Scholar 

  • Matthijs S, Tehrani KA, Laus G, Jackson RW, Cooper RM, Cornelis P (2007) Tioquinolobactin a Pseudomonas siderophore with antifungal and anti-Pythium activity. Environ Microbiol 9:425–434

    Article  PubMed  CAS  Google Scholar 

  • Matthijs S, Budzikiewicz H, Schafer M, Wathelet B, Cornelis P (2008) Ornicorrugatin, a new siderophore from Pseudomonas fluorescens AF76. Z Naturforsch C 63:8–12

    PubMed  CAS  Google Scholar 

  • Maurhofer M, Hase C, Meuwly P, Métraux JP, Défago G (1994) Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHAO: influence of the gacA gene of pyoverdine production. Phytopathology 84:139–146

    Article  CAS  Google Scholar 

  • Mazzucchi U, Baui C, Pupillo P (1979) The inhibition of susceptible and hypersensitive reactions by protein-lipopolysaccharide complexes from phytopathogenic pseudomonads: Relationship to polysaccharide antigenic determinants. Physiol Plant Pathol 14:19–30

    Article  CAS  Google Scholar 

  • McCullagh M, Utkhede R, Menzies JG, Punja ZK, Paulits TC (1996) Evaluation of plant growth promoting rhizobacteria for biological control of Pythium root rot of cucumbers grown in rockwool and effects on yield. Eur J Plant Pathol 102:747–755

    Article  Google Scholar 

  • Mercado-Blanco J, van der Drift KMGM, Olsson PE, Thomas-Oates JE, van Loon LC, Bakker PAHM (2001) Analysis of the pmsCEAB gene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    Article  PubMed  CAS  Google Scholar 

  • Meyer JM (2000) Pyoverdins: Pigments siderohores and potential taxonomic markers of fluorescent pseudomonas species. Arch Microbiol 174:135–142

    Article  PubMed  CAS  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Höfte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Mohammad D, Jesus MB, Van Loon LC, Bakker PAHM (2009) Analysis of determinants of Pseudomonas fluorescens WCS374r involved in induced systemic resistance in Arabidopsis thaliana. Biological control of fungal and bacterial plant pathogens. IOBC/WPRS Bull 43:109–112

    Google Scholar 

  • Mossialos D, Meyer JM, Budzikiewicz H, Wolff U, Koedam N, Baysse C (2000) Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400 whose production is repressed by the cognate pyoverdine. Appl Environ Microbiol 66:487–492

    Article  PubMed  CAS  Google Scholar 

  • Nagrajkumar M, Jayaraj J, Muthukrishnan S, Bhaskaran R (2005) Detoxification of oxalic acid by P.fluorescens strain PfMDU2: implication for the biocontrol of rice sheath blight caused by Rhizoctonia solani. Microbiol Res 160:291–298

    Article  CAS  Google Scholar 

  • Nakkeeran S, Dilantha FWG, Sidduqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Netherlands, pp 257–296

    Google Scholar 

  • Nandkumar R, Babu S, Vishwanath R (2000) Induction of systemic resistance in rice against sheath blight disease by Pseudomonas fluorescens. Soil Biol Biochem 33:603–612

    Article  Google Scholar 

  • Neilsen MN, Sorensen J (1999) Chitinolytic activity of Pseudomonas fluorescens isolated from barley and sugar beet rhizosphere. FEMS Microbiol Ecol 30:217–227

    Article  Google Scholar 

  • Newman MA, Daniels MJ, Dow JM (1995) Lipopolysaccharide from Xanthomonas campestris induces defense-related gene expression in Brassica campestris. Mol Plant Microbe Interact 8:778–780

    Article  PubMed  CAS  Google Scholar 

  • Nicole D, Min L, Xianwu G, Luyan M, Ricardo C-L, Claudine E (2003) Nitrogen fixation genetics and regulation in a Pseudomonas stutzeri strain associated with rice. Microbiology 149:2251–226

    Article  CAS  Google Scholar 

  • Nielsen MN, Sorensen J, Fels J, Pedersen HC (1998) Secondary metabolite and endochitinase dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl Environ Microbiol 64:3563–3569

    PubMed  CAS  Google Scholar 

  • Nielsen TH, Christophersen C, Anthoni U, Sorensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 86:80–90

    Article  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J (2000) Structure, production characteristics and fungal antagonism of tensin—a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    Article  PubMed  CAS  Google Scholar 

  • Nielsen TH, Sorensen D, Tobiasen C, Andersen JB, Christophersen C, Giskov M, Sorensen J (2002) Antibiotic and biosurfactant properties of cyclic lipopeptides produced by fluorescent Pseudomonas spp. from the sugar beet rhizosphere. Appl Environ Microbiol 68:3416–3423

    Article  PubMed  CAS  Google Scholar 

  • Niknam GR, Dawan SC (2003) Effect of seed bacterization and methods of application of pseudomonas fluorescens on the control of Rotylenchulus reniformis infecting tomato. Nematol Medit 31:231–237

    Google Scholar 

  • Nowak-Thompson B, Gould SJ, Loper JE (1997) Identification and sequence analysis of the genes encoding a polyketide synthase required for pyoluteorin biosynthesis in Pseudomonas fluorescens Pf-5. Gene 204:17–24

    Article  PubMed  CAS  Google Scholar 

  • Ongena M, Jourdan E, Adam A, Schäfer M, Budzikiewicz H, Thonart P (2008) Amino acids, iron, and growth rate as key factors influencing production of the Pseudomonas putida BTP1 benzylamine derivative involved in systemic resistance induction in different plants. Microb Ecol 55:280–292

    Article  PubMed  CAS  Google Scholar 

  • Palleroni NJ (1975) General properties and taxonomy of the genus Pseudomonas. In: Clarke PH, Richmond MH (eds) Genetics and biochemistry of Pseudomonas. Wiley, Baltimore, MD, pp 1–36

    Google Scholar 

  • Palleroni NJ (1992) Introduction to the family Pseudomonadaceae. In: Balows A, Truper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, identification, applications. Springer, New York, pp 3071–3085

    Google Scholar 

  • Palleroni NJ, Bradbury JF (1993) Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al. 1983. Int J Syst Bacteriol 43:606–609

    Article  PubMed  CAS  Google Scholar 

  • Palleroni NJ, Doudoroff M (1972) Some properties and taxonomic subdivisions of the genus Pseudomonas. Annu Rev Phytopathol 10:73–100

    Article  Google Scholar 

  • Palleroni N, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23:333–339

    Article  CAS  Google Scholar 

  • Pandey A, Durgapal A, Joshi M, Palni LMS (1999) Influence of Pseudomonas corrugate inoculation on root colonization and growth promotion of two important hill crops. Microbiol Res 154:259–266

    Article  Google Scholar 

  • Park CS, Paulitz TC, Baker R (1988) Biocontrol of Fusarium wilt of cucumber resulting from interactions between Pseudomonas putida and nonpathogenic isolates of Fusarium oxysporum. Phytopathology 78:190–194

    Article  Google Scholar 

  • Pathma J, Rahul GR, Kamaraj Kennedy R, Subashri R, Sakthivel N (2011) Secondary metabolite production by bacterial antagonists. J Biol Control 25(3):165–181

    Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  PubMed  CAS  Google Scholar 

  • Paulitz TC (1991) Effect of Pseudomonas putida on the stimulation of Pythium ultimum by seed volatiles of pea and soyabean. Phytopathology 81:1282–1287

    Article  CAS  Google Scholar 

  • Petermann SR, Sherwood JS, Logue CM (2008) The Yersinia high pathogenicity island is present in Salmonella enterica Subspecies I isolated from turkeys. Microb Pathog 45:110–114

    Article  PubMed  CAS  Google Scholar 

  • Pfender WF, Kraus J, Loper JE (1993) A genomic region from Pseudomonas fluorescens Pf-5 required for pyrrolnitrin production and inhibition of Pyrenophora tritici-repentis in wheat straw. Phytopathology 83:1223–1228

    Article  CAS  Google Scholar 

  • Picard C, Di Cello F, Ventura M, Fani R, Guckert A (2000) Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl Environ Microbiol 66:948–955

    Article  PubMed  CAS  Google Scholar 

  • Pierson LS, Thomashow LS (1992) Cloning of heterologous expression of phenazine biosynthesis locus from Pseudomonas aureofaciens 30–84. Mol Plant Microbe Interact 53:330–339

    Article  Google Scholar 

  • Pieterse CMJ, Ton J, Van Loon LC (2001) Cross-talk between plant defence signalling pathways: boost or burden? Ag Biotech Net 3:1–7

    Google Scholar 

  • Raaijmakers JM, Weller DM (1998) Natural plant protection by 2,4-diacetylphloroglucinol-producing Pseudomonas spp. in take-all decline soils. Mol Plant Microbe Interact 11:144–152

    Article  CAS  Google Scholar 

  • Rabindran R, Vidhyasekaran P (1996) Development of a formulation of Pseudomonas fluorescens pfALR2 for management of rice sheath blight. Crop Prot 15:715–721

    Article  Google Scholar 

  • Ralston E, Palleroni NJ, Doudoroff M (1973) Pseudomonas pickettii, a new species of clinical origin related to Pseudomonas solanacearum. Int J Syst Bacteriol 23:15–19

    Article  Google Scholar 

  • Raverkar KP, Konde BK (1988) Effect of Rhizobium and Azospirillum lipoferum inoculation on the nodulation, yield and nitrogen uptake of peanut cultivars. Plant Soil 106:249–25

    Article  CAS  Google Scholar 

  • Ravindra Naik P, Raman G, Badri Narayanan K, Sakthivel N (2008) Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol 8:230

    Article  CAS  Google Scholar 

  • Reddy RM, Reddy PG, Seenayya G (1999) Enhanced production of thermostable β-amylase and pullanase in the presence of surfactants by Clostridium thermosulfurogenes SV2. Process Biochem 34:87–92

    Article  CAS  Google Scholar 

  • Rigby D, Caceres D (2001) Organic farming and the sustainability of agricultural systems. Agric Syst 68(1):21–40

    Article  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  PubMed  CAS  Google Scholar 

  • Rojan P, John GS, Anisha K, Nampoothiri M, Pandey A (2011) Micro and macroalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193

    Article  CAS  Google Scholar 

  • Rosales AM, Thomashow L, Cook RJ, Mew TW (1995) Isolation and identification of antifungal metabolites produced by rice-associated antagonistic Pseudomonas spp. Phytopathology 85:1028–1032

    Article  CAS  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Paré PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134:1017–1026

    Article  PubMed  CAS  Google Scholar 

  • Sacherer P, Defago G, Haas D (1994) Extracellular protease and phospholipase C are controlled by the global regulatory gene gacA in the biocontrol strain Pseudomonas fluorescens CHAO. FEMS Microbiol Lett 116:155–160

    Article  PubMed  CAS  Google Scholar 

  • Saikia R, Kumar R, Arora DK, Gogoi DK, Azad P (2006) Pseudomonas aeruginosa inducing rice resistance against Rhizoctonia solani. Production of salicylic acid and peroxidases. Folia Microbiol 51:375–380

    Article  CAS  Google Scholar 

  • Sakthivel N, Gnanamanickam SS (1987) Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and for enhancement of grain yields in rice (Oryza sativa L.). Appl Environ Microbiol 53:2056–2059

    PubMed  CAS  Google Scholar 

  • Sakthivel N, Sunish Kumar R (2008) Dimer of phenazine-1-carboxylic acid and to the process of preparation thereof. USPTO 7,365,194 B2

    Google Scholar 

  • Salisbury FB (1994) The role of plant hormones. In: Wilkinson RE (ed) Plant–environment interactions. Marcel Dekker, New York, pp 39–81

    Google Scholar 

  • Salisbury FB, Ross CW (1992) Plant physiology, 4th edn. Wadsworth, Belmont, CA, p 682

    Google Scholar 

  • Saskia B, Kurt H, Joseph P, Monica H (1995) Involvement of pyochelin and pyoverdin in suppression of Pythium-induced damping-off of tomato by Pseudomonas aeruginosa 7nsk2. Appl Environ Microbiol 62:865–871

    Google Scholar 

  • Scher FM, Baker R (1982) Effect of Pseudomonas putida and a synthetic iron chelator on induction of soil suppressiveness to Fusarium wilt pathogens. Phytopathology 72:1567–73

    Article  CAS  Google Scholar 

  • Shanahan P, Sullivan DJO, Simpson P, Glennon JD, Gara FO (1992) Isolation of 2,4- diacetylphloroglucinol from a fluorescent pseudomonad and investigation of physiological parameters influencing its production. Appl Environ Microbiol 58:353–358

    PubMed  CAS  Google Scholar 

  • Shapira R, Ordentlich A, Chet I, Oppenheim AB (1989) Control of plant diseases by chitinase expressed from cloned DNA in Escherichia coli. Phytopathology 79:1246–1249

    Article  CAS  Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui ZA (2006) PGPR: prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) Biocontrol and biofertilization. Springer, Amsterdam, pp 111–142

    Chapter  Google Scholar 

  • Siddiqui IA, Shahid Shaukat S (2003) Suppression of root-knot disease by Pseudomonas fluorescens CHAO in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoroglucinol. Soil Biol Biochem 35(12):1615–1623

    Google Scholar 

  • Singh K, Singh RP (1989) Red rot. 111. In: Ricaud C, Egan BT, Gillaspie AG Jr, Hughes CG (eds) Diseases of sugarccule: major diseases. Elsevier, Amsterdam, pp 169–188

    Google Scholar 

  • Smith RS (1995) Inoculant formulations and applications to meet changing needs. In: Tikhonovich IA, Provorov NA, Romanov VI, Newton WE (eds) Nitrogen fixation: fundamentals and applications. Kluwer Academic, Dordrecht, pp 653–657

    Chapter  Google Scholar 

  • Sneath PHA, Stevens M, Sackin MJ (1981) Numerical taxonomy of Pseudomonas based on published records of substrate utilization. Anton Von Leeuwenhook 47:423–448

    Article  CAS  Google Scholar 

  • Sneh B, Dupler M, Elad Y, Baker R (1984) Chlamydospore germination of Fusarium oxysporum f. sp. Cucumerinum as affected by fluorescent and lytic bacteria from fusarium-suppressive soil. Phytopathology 74:1115–24

    Article  Google Scholar 

  • Sorensen D, Nielsen TH, Christophersen C, Sorensen J, Gajhede M (2001) Cyclic lipoundecapeptide amphisin from Pseudomonas sp. strain DSS73. Acta Crystallogr Sect Cryst Struct Commun 57:1123–1124

    Article  CAS  Google Scholar 

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads: a taxonomic study. J Gen Microbiol 43:159–271

    PubMed  CAS  Google Scholar 

  • Streit WR, Joseph CM, Phillips DA (1996) Biotin and other water-soluble vitamins are key growth factors for alfalfa root colonization by Rhizobium meliloti 1021. Mol Plant Microbe Interact 9:330–338

    Article  PubMed  CAS  Google Scholar 

  • Sun GX, Zhou WQ, Zhong JJ (2006) Organotin decomposition by pyochelin, secreted by Pseudomonas aeruginosa even in an iron-sufficient environment. Appl Environ Microbiol 72:6411–6413

    Article  PubMed  CAS  Google Scholar 

  • Sunish Kumar R, Ayyadurai N, Pandiaraja P, Reddy AV, Venkateswarlu Y, Prakash O, Sakthivel N (2005) Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J Appl Microbiol 98:145–154

    Article  PubMed  CAS  Google Scholar 

  • Suslow TV, Schroth MN (1982) Rhizobacteria of sugar beets: effects of seed application and root colonization on yield. Phytopathology 72:199–206

    Article  Google Scholar 

  • Thomashow LS, Weller DM (1988) Role of a phenazine antibiotic from Pseudomonas fluorescens in biological control of Gaeumannomyces graminis var. tirtici. J Bacteriol 170:3499–3508

    PubMed  CAS  Google Scholar 

  • Thomashow LS, Weller DM, Bonsall RF, Pierson LS (1990) Production of the antibiotic phenazine-1-carboxylic acid of fluorescent Pseudomonas species in the rhizosphere of wheat. Appl Environ Microbiol 56:908–912

    PubMed  CAS  Google Scholar 

  • Thrane C, Olsson S, Nielsen TH, Sorensen J (1999) Vital fluorescent stains for detection of stress in Pythium ultimum and Rhizoctonia solani challenged with viscosinamide from Pseudomonas fluorescens DR54. FEMS Microbiol Ecol 30:11–23

    Article  CAS  Google Scholar 

  • Thrane C, Nielsen TH, Nielsen MN, Sørensen J, Olsson S (2000) Viscosinamide-producing Pseudomonas fluorescens DR54 exerts a biocontrol effect on Pythium ultimum in sugar beet rhizosphere. FEMS Microbiol Ecol 33:139–146

    Article  PubMed  CAS  Google Scholar 

  • Tombolini R, van der Gaag DJ, Gerhardson B, Jansson JK (1999) Colonization pattern of the biocontrol strain Pseudomonas chlororaphis MA342 on barely seeds visualized by using green fluorescent protein. Appl Environ Microbiol 65:3674–3680

    PubMed  CAS  Google Scholar 

  • Tran H, Ficke A, Asiimwe T, Hofte M, Raaijmakers JM (2007) Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol 175:731–742

    Article  PubMed  CAS  Google Scholar 

  • Uthede RS, Koch CA, Menzies JG (1999) Rhizobacterial growth and yield promotion of cucumber plants inoculated with Pythium aphanidermatum. Can J Plant Pathol 21:265–271

    Article  Google Scholar 

  • Van Loon LC, Bakker P, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Peer R, Schippers B (1988) Plant growth responses to bacterization with selected Pseudomonas spp. strains and rhizospheres microbial development in hydroponic cultures. Can J Microbiol 35:456–463

    Article  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant growth-promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Van Wees SCM, Pieterse CMJ, Trijssenaar A, Van T, Westende YAM, Hartog F, van Loon LC (1997) Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol Plant Microbe Interact 10:716–724

    Article  PubMed  Google Scholar 

  • Velazhahan R, Datta SK, Muthukrishnan S (1999) The PR-5 family: thaumatin-like proteins. In: Datta SK, Muthukrishnan S (eds) Pathogenesis-related proteins in plants. CRC, Boca Raton, FL, pp 107–129

    Google Scholar 

  • Verhagen BWM, Trotel-Aziz P, Couderchet M, Hofte M, Aziz A (2010) Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61:249–260

    Article  PubMed  CAS  Google Scholar 

  • Vessey KJ (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vijay Krishna Kumar K, Krishnam Raju S, Reddy MS, Kloepper JW, Lawrence KS, Groth DE, Miller ME, Sudini H, Binghai D (2009) Evaluation of commercially available PGPR for control of rice sheath blight caused by Rhizoctonia solani. J Pure Appl Microbiol 3:485–488

    Google Scholar 

  • Vincent MN, Harrison LA, Brackin JM, Krovacevich PA, Mukerji P, Weller DM, Pierson EA (1991) Genetic analysis of antifungal activity of a soilborne Pseudomonas aurofaciens strain. Appl Environ Microbiol 57:2928–2934

    PubMed  CAS  Google Scholar 

  • Viswanathan R, Samiyappan R (1999a) Induction of systemic resistance by plant growth-promoting rhizobacteria against red rot disease caused by Colletotrichum falcatum went in sugarcane. Proc Sugar Technol Assoc India 61:24–39

    Google Scholar 

  • Viswanathan R, Samiyappan R (1999b) Identification of anti-fungal chitinases from sugarcane. ICAR News 5:1–2

    Google Scholar 

  • Viswanathan R, Samiyappan R (2000) Antifungal activity of chitinases produced by some fluorescent pseudomonas against Colletotrichum falcatum Went causing rot disease in sugarcane. Microbiol Res 155:1–6

    Article  Google Scholar 

  • Viswanathan R, Rajitha R, Ramesh Sundar A, Ramamoorthy V (2003) Isolation and identification of endophytic bacterial strains from sugarcane stalks and their In Vitro antagonism against the red rot pathogen. Sugarcane 5:25–29

    Article  CAS  Google Scholar 

  • Vleesschauwer DD, Hofte M (2005) Bacterial determinants involved in systemic resistance in rice. In: Gnanamanickam SS, Balasubramanian R, Anand N (eds) Asian conference on emerging trends in plant-microbe interactions, Chennai, India, pp 1–4

    Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed  CAS  Google Scholar 

  • Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:1–10

    Article  Google Scholar 

  • Wang R, Korboulewsky N, Prudent P, Baldy V, Bonin G (2009) Can vertical-flow wetland systems treat high concentrated sludge from a food industry? A mesocosm experiment testing three plant species. Ecol Eng 35:230–237

    Article  Google Scholar 

  • Weisbeek PJ, van der Hofstad GAJM, Schippers B, Marugg JD (1986) Genetic analysis of the iron uptake system of two plant growth promoting Pseudomonas strains. NATO ASI Ser A 117:299–313

    CAS  Google Scholar 

  • Weller DM, Cook RJ (1983) Suppression of take-all of wheat by seed treatments with fluorescent pseudomonads. Phytopathology 73:463–469

    Article  Google Scholar 

  • Weller DM, Cook RJ (1986) Increased growth of wheat by seed treatment with fluorescent pseudomonads, and implications of Pythium control. Can J Microbiol 8:328–334

    Google Scholar 

  • Whalen M, Innes R, Bent A, Staskawicz B (1991) Identification of Pseudomonas syringae pathogens of Arabidopsis thaliana and a bacterial gene determining avirulence on both Arabidopsis and soybean. Plant Cell 3:49–59

    PubMed  CAS  Google Scholar 

  • Wie G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Xie H, Pasternak JJ, Glick BR (1996) Isolation and characterization of mutants of the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2 that overproduce indoleacetic acid. Curr Microbiol 32:67–71

    Article  CAS  Google Scholar 

  • Xu GW, Gross DC (1986) Field evaluations of the interactions among fluorescent pseudomonads, Erwinia caratovora and potato yields. Phytopathology 76:423–430

    Article  Google Scholar 

  • Yan Y, Ping S, Peng J, Han Y, Li L, Yang J, Dou Y, Li Y, Fan H, Fan Y, Li D, Zhan Y, Chen M, Lu W, Zhang W, Cheng Q, Jin Q, Lin M (2010) Global transcriptional analysis of nitrogen fixation and ammonium repression in root-associated Pseudomonas stutzeri A1501. BMC Genomics 11:11

    Article  PubMed  CAS  Google Scholar 

  • Youard ZA, Mislin GL, Majcherczyk PA, Schalk IJ, Reimmann C (2007) Pseudomonas fluorescens CHAO produces enantio- pyochelin, the optical antipode of the Pseudomonas aeruginosa siderophore pyochelin. J Biol Chem 282:35546–35553

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natarajan Sakthivel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Subashri, R., Raman, G., Sakthivel, N. (2013). Biological Control of Pathogens and Plant Growth Promotion Potential of Fluorescent Pseudomonads. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Disease Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33639-3_4

Download citation

Publish with us

Policies and ethics