Skip to main content

Rhizobacteria for Management of Nematode Disease in Plants

  • Chapter
  • First Online:
Bacteria in Agrobiology: Disease Management

Abstract

Plant-parasitic nematodes are considered worst enemies of mankind because of devastation they cause to crops. There is hardly any crop which is not affected by nematodes. Management of the nematode disease appears to be less straightforward than one might anticipate. Therefore, it is fundamental to have prior knowledge of the interactions involved, as even low densities of nematode can result in a disease of significant importance. One of the solutions is to use chemicals to control the interacting microorganisms and thus preventing the formation of disease-like complexes. However, potential threat to environment, their harmful effects on nontarget species, including human, as well as their residual effects on climax communities, the time required for the development of nematode-resistant host cultivars, and high costs of chemical control agents possess a serious problem in their wide application. An alternative to chemicals that fulfill all requirements and brings sustainability of agricultural crops is the range of rhizospheric microorganisms which attack the plant-parasitic nematodes. Hence, nematode management strategies using biological microorganisms have gained considerable interest. As a group of important natural enemies of nematode disease, microorganisms exhibit diverse modes of action: these include parasitizing; producing toxins, antibiotics, or enzymes; competing for nutrients; inducing systemic resistance of plants; and promoting plant health. They act synergistically on plants through the direct suppression of nematodes, promoting plant growth and facilitating the rhizospheric colonization and activity of microbial antagonists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Addabbo T, Sassanelli N (1998) The suppression of Meliodogyne incognita on tomato by grape paramece. Soil Amend Nematol Medit 26:145–149

    Google Scholar 

  • Ahman J, Johansson T, Olsson M, Punt PJ, van den Hondel CAMJJ, Tunlid A (2002) Improving the pathogenicity of a nematode-trapping fungus by genetic engineering of a subtilisin with nematotoxic activity. Appl Environ Microbiol 68:3408–3415

    Article  PubMed  CAS  Google Scholar 

  • Akhtar M (1999) Plant growth and nematode dynamic in response to soil amendments with neem product, urea and compost. Bioresour Technol 19:181–183

    Article  Google Scholar 

  • Akhtar M, Alam MM (1984) Use of chopped floral plant parts in suppressing population of plant parasitic nematodes. Indian J Plant Pathol 2(2):194–195

    Google Scholar 

  • Akhtar M, Alam MM (1990) Control of plant parasitic nematodes with agrowastes soil amendments. Pak J Nematol 8(1):25–28

    Google Scholar 

  • Akhtar M, Alam MM (1993) Utilization of waste materials in nematode control: a review. Bioresour Technol 45:1–7

    Article  CAS  Google Scholar 

  • Akhtar M, Mahmood I (1993) Effect of ononchus aquaticus and organic amendments on Meloidogyne incognita development on chilli. Nematol Medit 21:251–252

    Google Scholar 

  • Aksoy HM, Mennan S (2004) Biological control of Heterodera cruciferae (Tylenchida: Heteroderidae) Franklin 1945 with fluorescent Pseudomonas spp. Phytopathology 152(8–9):514–518

    Google Scholar 

  • Alam SS, Bashir M, Qureshi SH (1985) Incidence of the root knot nematode, Meloidogyne incognita on chickpea in Pakistan. Int Chickpea Newslett 12:32

    Google Scholar 

  • Ali AH (1996) Biocontrol of reniform and root-knot nematodes by new bacterial isolates. Bull Fac Agric Univ Cairo 47(3):487–497

    Google Scholar 

  • Ali NI, Imran A, Siddiqui S, Zaki MJ (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol Biochem 34:1051–1058

    Article  CAS  Google Scholar 

  • Andersen SO (1985) Sclerotizacion and tanning of the cuticle. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology. Biochemical pharmacology. Pergamon, Oxford, pp 59–74

    Google Scholar 

  • Anver S, Alam M (1994) Response of chickpea cultivars/accessions inoculated with M. incognita. Indian J Nematol 24(2):101–105

    Google Scholar 

  • Baker KF, Cook RJ (1974) In: Freeman WH (ed) Biological control of plant pathogens. American Phytopathological Society, St. Paul, MN, p 433

    Google Scholar 

  • Becker JO, Zavaleta-Majia E, Colbert SF, Schroth MN, Weinhold AR, Hancock JG, Vangundy SD (1988) Effects of rhizobacteria on root-knot nematodes and gall formation. Phytopathology 78:1466–1469

    Article  Google Scholar 

  • Beirner BP (1967) Biological control and its potential. World Rev Pest Control 6:7–20

    Google Scholar 

  • Bhagwati B, Phukan PN (1991) Pathogenicity of root-knot nematode, Meloidogyne incognita on pea. Indian J Nematol 21:141–144

    Google Scholar 

  • Brown SM, Kepner JL, Smart GC (1985) Increased crop yields following application of Bacillus penetrans to field plots infested with Meloidogyne incognita. Soil Biol Biochem 17:483–486

    Article  Google Scholar 

  • Butool F, Haseeb A, Shukla PK (1998) Management of root-knot nematode Meloidogyne incognita infesting Egyptian henbane, Hyoscyamus muticus L., by the use of nematicides and oilcakes. Int J Pest Manag 44:199–202

    Article  Google Scholar 

  • Castillo MB, Rusell CC, Morrisen LS (1973) Development of Meloidogyne hapla in peanut (Arachis hypogea). Phytopathol 63:583–585

    Article  Google Scholar 

  • Christie JR (1936) The development of root-knot nematode galls. Phytopathol 26:1–22

    Google Scholar 

  • Colyer PD, Mount MS (1984) Bacterization of potato with Pseudomonas putida and its influence on post harvest soil rot diseases. Plant Dis 68:703–706

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Cronin D, Moenne-Loccoz Y, Fenton A, Dunne C, Dowling D, O’Gara F (1997) Role of 2, 4-diacetylphloroglucinol in the interactions of the biocontrol pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl Environ Microbiol 63:1357–1361

    PubMed  CAS  Google Scholar 

  • Culbreath AK, Rodrigues-Kabana R, Morgan-Jones G (1985) The use of hemicellulosic waste matter for reduction of the phytotoxic effect of chitin and control of root-knot nematodes. Nematropica 15:49–75

    Google Scholar 

  • Davies KA, Fisher JM (1976) Factors influencing the number of larvae of Heterodera avenue invading barley seedlings in vitro. Nematolog 22:153–162

    Google Scholar 

  • DeBach P (1964) The scope of biological control. In: DeBach P (ed) Biological control of insect pests and weeds. Chapman and Hall, London, pp 3–20

    Google Scholar 

  • Deka R, Sinha AK, Neeg PP (2003) Pathogenicity of citrus nematode, Tylenchulus semipenetrans on citrus jamabhiri. Indian J Nematol 33(1):63–64

    Google Scholar 

  • Desaeger J, Odee D, Machua J, Esitubi M (2005) Interactions between M. javanica (Treub) chitwood and rhizobia on growth of Sesbania sesban (L.) Merr. Appl Soil Eco 29:252–258

    Article  Google Scholar 

  • Deshwal VK, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Indian J Exp Biol 41:1160–1164

    PubMed  CAS  Google Scholar 

  • Elasri M, Delorme S, Lemanceau P, Stewart G, Laue B, Glickmann E, Oger PM, Dessaux Y (2001) Acyl-homoserine lactone production is more common among plant-associated Pseudomonas spp. than among soil borne Pseudomonas spp. Appl Environ Microbiol 67:1198–1209

    Article  PubMed  CAS  Google Scholar 

  • Ester BL, Enebak SA, Chappelka AH (2004) Loblolly pine seedling growth after inoculation with plant growth promoting rhizobacteria and ozone exposure. Can J For Res 34:1410–1416

    Article  Google Scholar 

  • Fazal MB, Yogub M, Siddiqui ZA (1996) Determination of threshold level of Meloidogyne incognita and Rotylenchulus reniformis on blackgram. Indian J Nematol 26:253–255

    Google Scholar 

  • Fravel DH (1988) Role of antibiosis in the biocontrol of plant diseases. Annu Rev Phytopathol 26:75–91

    Article  CAS  Google Scholar 

  • Fray RG (2002) Altering plant–microbe interaction through artificially manipulating bacterial quorum sensing. Ann Bot 89:245–253

    Article  PubMed  CAS  Google Scholar 

  • Garrett SD (1965) Toward biological control of soil-borne plant pathogens. In: Baker KF, Synder WC (eds) Ecology of soil-borne plant pathogens. John Murray, London, pp 4–17

    Google Scholar 

  • Gautam A, Siddiqui ZA, Mahmood I (1995) Integrated management of Meloidogyne incognita on tomato. Nematol Medit 23:245–272

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Gokte N, Swarup G (1988) On the potential of some bacterial biocides against root knot nematode and cyst nematodes. Indian J Nematol 18:152–153

    Google Scholar 

  • Goyal S, Trivedi PC (1999) Pathogenicity of Meloidogyne incognita on winter ornamentals (Antirrhinum majus and Dianthus barbatus). Indian J Nematol 29(1):85–87

    Google Scholar 

  • Guetsky R, Shtienberg D, Elad Y, Dinoor A (2001) Combining biocontrol agents to reduce the variability of biological control. Phytopathology 91:621–627

    Article  PubMed  CAS  Google Scholar 

  • Gupta G (2006) Biocontrol approaches for the management of Meloidogyne incognita infecting Coriandrum sativum. Ph.D. Thesis, Department of Botany, University of Rajasthan, Jaipur

    Google Scholar 

  • Gupta DC, Paruthi IJ, Verma KK (1986) Reaction of mungbean germplasms and its pathogenicity against Meloidogyne javanica. Indian J Nematol 16(2):194–196

    Google Scholar 

  • Gutterson NI, Layton TJ, Ziegle JS, Warren GJ (1986) Molecular cloning of genetic determinants for inhibition of fungal pathogens by fluorescent pseudomonads. J Bacteriol 165:696–703

    PubMed  CAS  Google Scholar 

  • Hackenberg C, Muehlchen A, Forge T, Vrain T (1997) Antagonistic potential of rhizobacteria for the control of root-lesion nematodes on fruit crops. Pest Manag News 9(1):15

    Google Scholar 

  • Hallmann J, Quadt-Hallmann A, Miller WG, Sikora RA, Lindow SE (2001) Endophytic colonization of plants by the biocontrol agent Rhizobium etli G12 in relation to Meloidogyne incognita infection. Phytopathology 91(4):415–422

    Article  PubMed  CAS  Google Scholar 

  • Haseeb A, Alam MM, Khan AM, Saxena SK (1977) Nematode population as influenced by soil amendments. Geobios 5:152–155

    Google Scholar 

  • Hollis JP, Rodriguez-Kabana R (1966) Rapid kill of nematodes in flooded soil. Phytopathology 6:1015–1019

    Google Scholar 

  • Hollis JP, Rodriguez-Kabana R (1967) Fatty acids in Louisiana rice fields. Phytopathology 57:841–847

    PubMed  CAS  Google Scholar 

  • Hussain N, Saljogi AR, Khalil SK (1993) Efficacy of different nematicides for the control of root knot nematodes associated with tomato crop. In: Maqbool MA, Ghaffar A, Zaki MJ (eds) Proceedings of second international workshop on plant nematology. NNRC, Karachi, pp 51–59

    Google Scholar 

  • Hussaini SS, Seshadri AR (1975) Inter relationships between Meloidogyne incognita and Rhizobium sp. on Mungbean (Phaseolus aureus). Indian J Nematol 5:189–199

    Google Scholar 

  • Ignoffo CM, Dropkin VH (1977) Deleterious effects of the thermostable toxin of Bacillus thuringiensis on the species of soil inhibiting, mycophagous and plant parasitic nematodes. J Krans Entomol Soc 50:394–395

    Google Scholar 

  • Insunza V, Alstorm S, Eriksson B (1999) Root-associated bacteria from nematicidal plants and their suppressive effects on Trichodorid nematodes in potato. In: Proceedings of the fifth international PGPR workshop, Cordoba, Argentina

    Google Scholar 

  • Ioannis GO, Karpouzas DG (2001) Evaluation of chemical and integrated strategies as alternatives to methyl bromide for the control of root-knot nematodes. Greece Pest Manag Sci 59(8):883–892

    Google Scholar 

  • Ismail AE, Fadel M (1997) Suppressive effects of some native isolates of Bacillus spp on Meloidogyne incognita and Tylenchulus semipenetrans. Egypt J Biol Pest Control 7(2):53–60

    Google Scholar 

  • James DW, Gutterson N (1986) Multiple antibiosis produced by Pseudomonas fluorescens HV37a and their differential regulation by glucose. Appl Environ Microbiol 52:1183–1189

    PubMed  CAS  Google Scholar 

  • Jansson HG, Nordbring-Hertz B (1988) Infection events in the fungus-nematode system. In: Poiner GO, Jansson HB (eds) Diseases of nematodes. CRC, Boca Raton, FL, pp 59–72

    Google Scholar 

  • Jatala P (1986) Biological control of plant parasitic nematodes. Annu Rev Phytopathol 24:453–489

    Article  Google Scholar 

  • Johnson RW (1978) Effect of nematicides applied through overhead irrigation on the control of root-knot nematodes on tomato transplants. Plant Dis Reptr 62(1):48–51

    CAS  Google Scholar 

  • Johnson AW (1985) The role of nematicides in nematode management. In: Sasser JN, Carter CC (eds) An advanced treatise on Meloidogyne control. North Carolina University Graphics, Raleigh, NC, pp 249–267

    Google Scholar 

  • Johnston TM (1958) Antibiosis of Clostridium butyricum Prazmowski on Tylenchorhynchus martini Fielding 1956 (nematode Phasmidia) in submerged rice soil. Ph.D. Thesis, Louisiana State University, Baton Rouge

    Google Scholar 

  • Jonathan EI, Genendran G, Mannel WW (2000) Management of Meloidogyne incognita and Helicotylenchus multicinctus in banana with organic amendments. Nematol Medit 28:103–105

    Google Scholar 

  • Jones JP, Overman AJ (1976) Tomato wilt, nematodes and yields as affected by soil reactions and a persistent contact nematicides. Plant Dis Reprt 60:913–917

    CAS  Google Scholar 

  • Kalita DN, Phukan PN (1993) Pathogenicity of Meloidogyne incognita on blackgram. Indian J Nematol 23(1):105–109

    Google Scholar 

  • Keel C J (1992) Bacterial antagonists of plant pathogen in the rhizosphere: mechanism and prospects. In: Jensen DF, Hockenhull J, Fokkema NJ (eds) New approaches in biological control of soil borne diseases. IOBC/WPRS Bull XV/I:93–99

    Google Scholar 

  • Kermarrec A, Jacqua G, Anais J (1994) Effect of Fusarium solani and Pseudomonas solanacearum on the infestation of auvergine with the plant parasitic nematode, Rotylenchulus reniformis. Nematologica 40:152–154

    Google Scholar 

  • Kerr A (1980) Biological control of crown gall through production of agrocin 84. Plant Dis 64:25–30

    Google Scholar 

  • Kerry B (1995) New strategies for the management of plant parasitic nematodes with special emphasis on biological control. Arab J Plant Prot 13:47–52

    Google Scholar 

  • Khan MW (1997) The four major species of root-knot nematodes-current status and management approach. Indian Phytopathol 50:445–447

    Google Scholar 

  • Khan AA, Alam MM (1985) Control of Meloidogyne incognita on tomato by chemical dips. Pak J Nematol 3(2):105–109

    Google Scholar 

  • Khan AA, Khan MW (1991) Penetration and development of Meloidogyne incognita race I and Meloidogyne javanica in susceptible and resistant vegetables. Nematropica 21:73–77

    Google Scholar 

  • Khan A, Ali T, Aslam M (1991) Comparative efficacy of tenekil against plant parasitic nematodes attacking chillies in Pakistan. Pak J Nematol 3:105–109

    Google Scholar 

  • Khan A, Shaukat SS, Ahmad I (2001) Effect of organic manure and carbofuran on nematodes associated with garlic. Pak J Biol Sci 4:319–320

    Article  Google Scholar 

  • Kloepper JW, Leong J, Teintz M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth promoting rhizobacteria. Nature 286:885–886

    Article  CAS  Google Scholar 

  • Kloepper JW, Hume DJ, Scher FM, Singeleton C, Tipping B, Laliberte M, Frauley K, Kutchaw T, Simonson C, Lifshitzr R, Zeleska I, Lee L (1988) Plant growth-promoting rhizobacteria (PGPR) on canola (rape seed). Plant Dis 72:42–46

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowich RK (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, Mclnroy JA, Young RW (1992) Rhizospheric bacteria antagonistic to soybean cyst (Heterodera glycines) and root knot (Meloidogyne incognita) nematodes: Identification by fatty acid analysis and frequency of biological control activity. Plant Soil 139:75–84

    Article  CAS  Google Scholar 

  • Kloepper JW, Rodriguez-Mbana R, Zehnder GW, Murphy JF, Sikora E, Fernandez C (1999) Plant root bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Aust Plant Pathol 28:21–26

    Article  Google Scholar 

  • Kluepfel DA, Mc Innis TM, Zehr EI (1993) Involvement of root-colonizing bacteria in peach orchard soil suppressive of the nematodes, Criconemella xenoplax. Phytopathology 83:1240–1245

    Article  Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2006) Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganism. Appl Soil Ecol 31:91–100

    Article  Google Scholar 

  • Krusberg LR, Nelsen LW (1958) Pathogenesis of root- knot nematodes to the Pureto Rico variety of sweet potato. Phytopathology 48:30–39

    Google Scholar 

  • Kumar T (2006) Rhizobacteria in biocontrol of Heterodera cajani infecting Sesamum indicum L. Ph.D. Thesis, Department of Botany and Microbiology, Gurukul Kangri University, Haridwar

    Google Scholar 

  • Kumar T, Bajpai VK, Maheshwari DK, Kang SC (2005a) Plant growth promotion and suppression of root disease complex due to Meloidogyne incognita and Fusarium oxysporum by fluorescent pseudomonads in tomato. Agric Chem Biotechnol 48:79–83

    Google Scholar 

  • Kumar T, Kang SC, Maheshwari DK (2005b) Nematicidal activity of some fluorescent pseudomonads on cyst forming nematode, Heterodera cajani and growth of Sesamum indicum var. RT1. Agric Chem Biotechnol 48(4):161–166

    Google Scholar 

  • Lucy M, Reed K, Glick R (2004) Application of free living plant growth promoting rhizobacteria. Antonie van Leeuwenhook 86:1–25

    Article  CAS  Google Scholar 

  • Lugtenberg BJJ, Bloemberg GB (2004) In: Ramos JL (ed) Pseudomonas, vol I. Kluwer Academic, New York, pp 403–430

    Google Scholar 

  • Luis OR (2005) Physical, chemical and environmental properties of selected chemical alternatives for the pre-plant use of methyl bromide as soil fumigant. Pest Manag Sci 3:315–321

    Google Scholar 

  • Mahapatra SN, Swain PK (2001) Interaction between Meloidogyne incognita and Fusarium oxysporum on blackgram. Ann Plant Prot Sci 9:92–94

    Google Scholar 

  • Mahapatra SN, Swain PK, Narain A (1999) Pathogenicity and varietal reaction of blackgram against Meloidogyne incognita and Fusarium oxysporum. Indian J Nematol 29(1):13–18

    Google Scholar 

  • Mani A, Sethi CL (1984) Plant growth of chickpea as influence by initial inoculum levels of Meloidogyne incognita. Indian J Nematol 14(1):41–44

    Google Scholar 

  • Maqbool M, Hashmi A, Ghaffar A (1987) Effect of Latex extract from Euphorbia caducifolia and Calotropis procera on root-knot nematodes Meloidogyne incognita infesting tomato and egg plant. Pak J Nematol 5(1):43–47

    Google Scholar 

  • Mazzola M, Cook RJ, Thomashaow LS, Weller DM, Pierson LS (1992) Contribution of phenazine antibiotic biosynthesis to the ecological competence of fluorescent pseudomonads in soil habitat. Appl Environ Microbiol 58:2616–2624

    PubMed  CAS  Google Scholar 

  • McSolrey R, Ghallar RN (1995) Effect of yard waste compost on plant parasitic nematode densities in vegetable crops. Suppl J Nematol 27:545–549

    Google Scholar 

  • Mercer CF, Greenwood DR, Grant JL (1992) Effect of plant and microbial chitinases on the eggs and juveniles of Meloidogyne hapla Chitwood. Nematologica 38:227–236

    Article  Google Scholar 

  • Midha RL (1990) Studies on nematode disease of spices and condiments. Ph.D. Thesis, University of Rajasthan, Jaipur

    Google Scholar 

  • Miller PM, Sands DC (1977) Effects of hydrolytic enzymes on plant parasitic nematodes. J Nematol 9:192–197

    PubMed  CAS  Google Scholar 

  • Mittal N, Saxena G, Mukerji KG (1995) Integrated control of root knot disease in three crop plants using chitin and Paecilomyces lilacinus. Crop Prot 14:647–651

    Article  Google Scholar 

  • Mohammed SH, El Saedy MA, Enan MR, Ibrahim NE, Ghareeb A, Moustafa SA (2008) Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita. J Cell Mol Biol 7(1):57–66

    Google Scholar 

  • Mohanty KC, Mohanty PK, Pradhan T (1997) Effect of Meloidogyne incognita on root biochemistry and functioning of nodules in green gram. Indian J Nematol 27(1):1–5

    Google Scholar 

  • Morgan-Jones G, White JF, Rodriguez-Kabana R (1984) Fungal parasites of Meloidogyne incognita in an Alabama soybean field soil. Nematropica 14:93–96

    Google Scholar 

  • Muller R, Gooch PS (1982) Organic amendments in nematode control. An examination of literature. Nematropica 12:319–326

    Google Scholar 

  • Nasima IA, Siddiqui IA, Shaukat S, Zaki MJ (2002) Nematicidal activity of some strains of Pseudomonas spp. Soil Biol Biochem 34(8):1051–1058

    Article  Google Scholar 

  • Nath RP, Banerjee AK, Haider MG, Sinha BK (1979) Studies on the nematodes of pulse crops in India: pathogenicity of Meloidogyne incognita on gram. Indian Phytopathol 32:28–31

    Google Scholar 

  • Nemec B (1910) Das problem der Befrrchtu ngsvorgange and andere Zytologische Fragen. VI. Vielker nige Riesenzellen in Heterodera gallen. Gebruder Borntrager 151–173

    Google Scholar 

  • Oka K, Chal I, Spiegal Y (1993) Control of root knot nematode Meloidogyne javanica by Bacillus cereus. Biol Sci Technol 3:115–126

    Article  Google Scholar 

  • Oostendorp M, Sikora RA (1989) Seed treatment with antagonistic bacteria for the suppression of Heterodera schachtii early root infection of sugar beet. Rev de Nematol 12:77–83

    Google Scholar 

  • Oostendorp M, Sikora RA (1990) In vitro interrelationship between rhizosphere bacteria and Heterodera schachtii. Rev de Nematol 13:269–274

    Google Scholar 

  • Pandey R (1992) Biochemical root pathology of Meloidogyne spp. infected chilli plants and their control. Ph.D. Thesis, University of Rajasthan, Jaipur

    Google Scholar 

  • Patel HH, Dave A (2000) Inorganic phosphate solubilizing soil Pseudomonas. Indian J Microbiol 39:161–164

    Google Scholar 

  • Pearson JP, Delden C, Iglewski BH (1999) Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. J Bacteriol 181:1203–1210

    PubMed  CAS  Google Scholar 

  • Perveen K, Haseeb A, Shukla PK (1999) Effect of Meloidogyne incognita and Fusarium udum on the disease development and growth of pigeonpea. Curr Nematol 10:33–40

    Google Scholar 

  • Pillai SN, Desai MV (1976) “Punnakkai” cake on the control of root-knot nematode. Helminth Abst 1625 Sr B 47(4):154

    Google Scholar 

  • Prasad SSV, Tilak KVBR (1972) Aerobic spore forming bacteria from root knot nematode infested soil. Indian J Microbiol 11:59–60

    Google Scholar 

  • Qamar F, Khan SA, Saeed M, Khan HA (1985) Efficacy of tenekil against nematode parasitizing chillies. Pak J Sci Ind Res 28:276–278

    CAS  Google Scholar 

  • Raaijmakers JM, Weller DM (2001) Exploiting genotypic activity of 2,4-diacetylphloroglucinol producing Pseudomonas sp.: characterization of superior root colonization Pseudomonas fluorescens strain Q8rl-96. Appl Environ Microbiol 67:2545–2554

    Article  PubMed  CAS  Google Scholar 

  • Racke J, Sikora RA (1985) Einfluss von Rhizosphare bakterien auf Rhizoctonia solani and den Befall der karteffetrovte Hanja mit Globodera pallide. Vortr Pflanzenzucht 9:21–28 Status Seminar Grunback 2–21 April

    Google Scholar 

  • Racke J, Sikora RA (1992) Isolation, formulation and antagonistic activity of rhizosphere bacteria toward the potato cyst nematode Globodera pallida. Soil Biol Biochem 24:531–536

    Article  Google Scholar 

  • Rahman MF, Sharma GK, Alam MM (1988) Evaluation of nematicidal potential in two insecticides against root-knot nematode, Meloidogyne incognita attacking tomato. Pak J Nematol 6(20):79–82

    Google Scholar 

  • Ramamoorthy V, Samiyappan R (2001) Induction of defense related genes in Pseudomonas fluorescens treated chilli plants in response to infection by Colletotrichum capsici. J Mycol Plant Pathol 31:146–155

    CAS  Google Scholar 

  • Reddy PP, Singh DB, Ramkishun P (1979) Effect of root-knot nematodes on the susceptibility of Pusa Purple cluster brinjal to bacterial wilt. Curr Sci 48:915–916

    Google Scholar 

  • Reitz M, Rudolph K, Schroder I, Hoffmann-Hergarten S, Hallmann J, Sikora RA (2000) Lipopolysaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl Environ Microbiol 66:3515–3518

    Article  PubMed  CAS  Google Scholar 

  • Roberts PA (1988) Effects of metam-sodium applied by drip irrigation on root-knot nematodes, Pythium ultimum, and Fusarium sp. in soil and on carrot and tomato roots. Plant Dis 72:213–217

    Article  Google Scholar 

  • Roberts PA (1995) Conceptual and practical aspects of variability in root knot nematodes related to host plant resistance. Annu Rev Phytopathol 33:199–221

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Kabana R (1986) Organic and inorganic nitrogen amendments to soil as nematode suppressants. J Nematol 18:129–135

    PubMed  CAS  Google Scholar 

  • Rodriguez-Kabana R, Jordan JW, Hollis JP (1965) Nematodes: biological control in rice fields, role of hydrogen sulfide. Science 148:524–526

    Article  PubMed  CAS  Google Scholar 

  • Romeis J, Meissle M, Bigler F (2006) Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat Biotechnol 24:63–71

    Article  PubMed  CAS  Google Scholar 

  • Samiyappan R, Amutha G, Kandan A, Nandakumar R, Babu S (2003) Purification and partial characterization of a phytotoxin produced by Sarocladium oryzae, the rice sheath rot pathogen. Arch Phytopathol Plant Prot 36:247–256

    Article  CAS  Google Scholar 

  • Schippers B, Bakker AW, Bakker PAHM (1987) Interactions of deleterious and beneficial rhizosphere microorganisms and the effect of cropping practices. Annu Rev Phytopathol 25:339–358

    Article  Google Scholar 

  • Schroth MN, Hancock JG (1992) Disease suppressive soil and root colonizing bacteria. Science 216:1376–1381

    Article  Google Scholar 

  • Schuster ML (1959) Relation of root-knot nematodes and irrigation water to the incidence and dissemination of bacterial wilt of bean. Plant Dis Rep 43:27–32

    Google Scholar 

  • Sen K, Dasgupta MK (1977) Additional host of the root-knot nematode Meloidogyne spp. from India. Indian J Nematol 7:74–77

    Google Scholar 

  • Sharma A (1989) Studies on nematode infected and normal plant tissues of a vegetable crop-Lycopersicum esculentum mill in vitro and in vivo. Ph.D. Thesis, University of Rajasthan, Jaipur

    Google Scholar 

  • Sharma N (2004) Application of biocontrol agents in the management of Meloidogyne-Fusarium complex of cumin. Ph.D. Thesis, University of Rajasthan, Jaipur

    Google Scholar 

  • Sharma S, Siddiqui AV, Parihar A (2000) Studies on life cycle of Meloidogyne incognita on groundnuts. Indian J Nematol 30(2):232

    Google Scholar 

  • Shukla PK, Haseeb A (2002) Survey of farmer’s fields for the association of plant parasitic nematodes and wilt fungi with pigeonpea and quantification of losses. Indian J Nematol 32(2):162–164

    Google Scholar 

  • Siddiqui ZA, Hussain SI (1991) Studies on the biological control of root knot nematode. Curr Nematol 2:5–6

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1993) Biological control of Meloidogyne incognita race 3 and Macrophomina phaseolina by Paecilomyces lilacinus and Bacillus subtilis alone and in combination on chickpea. Fundam Appl Nematol 16:215–218

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995a) Management of Meloidogyne incognita race 3 and Macrophomina phaseolina by fungus culture filtrate and Bacillus subtilis on chickpea. Fundam Appl Nematol 18:71–76

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995b) Role of plant symbionts in nematode management: a review. Bioresour Technol 54:217–226

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Mahmood I (1995c) Biological control of Heterodera cajani and Fusarium udum by Bacillus subtilis, Bradyrhizobium japonicum and Glomus fasciculatum on pigeonpea. Fundam Appl Nematol 18:556–559

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1998) Effect of plant growth promoting bacterium an AM fungus and soil types on the morphometrics and reproduction of Meloidogyne javanica on tomato. Appl Soil Ecol 8:77–84

    Article  Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour Technol 69:167–179

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2003) Suppression of root-knot disease by P. fluorescens CHAO in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylphloroglucinol. Soil Biol Biochem 35:1615–1623

    Article  CAS  Google Scholar 

  • Siddiqui IA, Shaukat SS (2004) Systemic resistance in tomato induced by biocontrol bacteria against the root knot nematode Meloidogyne javanica is independent of salicylic acid production. J Phytopathol 152:1439–1446

    Article  Google Scholar 

  • Siddiqui IA, Haas D, Heeb S (2005) Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 71:5646–5649

    Article  PubMed  CAS  Google Scholar 

  • Siddiqui ZA, Qureshi A, Akhtar MS (2009) Biocontrol of root-knot nematode Meloidogyne incognita by Pseudomonas and Bacillus isolates on Pisum sativum. Arch Phytopathol Plant Prot 42(12):1154–1164

    Article  CAS  Google Scholar 

  • Sikora RA (1988) Interrelationship between plant health promoting rhizobacteria, plant parasitic nematodes and soil microorganisms. Med Fac Landbouwwet Rijksuniv Gent 53(2b):867–878

    Google Scholar 

  • Sikora RA, Singh RS, Sitaramaiah K (1973) Control of root-knot through organic and inorganic soil amendments. J Hort Sci 2:123–127

    Google Scholar 

  • Sikora RA, Racke J, Bodenstein F (1989) Influence of plant health promotion rhizobacteria antagonistic to Globodera pallida and Heterodera schachtii on soil borne fungal and bacterial plant pathogens of potato and sugarbeet. J Nematol 21:588

    Google Scholar 

  • Singh B, Goswami BK (2000) Pathogenicity of Meloidogyne incognita on cowpea. Indian J Nematol 30(2):249–250

    Google Scholar 

  • Singh RS, Sitaramaiah K (1966) Incidence of root-knot of okra and tomatoes in oil-cake amended soil. Plant Dis Rep 50:668–672

    Google Scholar 

  • Singh RS, Sitaramaiah K (1970) Control of plant parasitic nematodes with organic soil amendments. Pests News Sum 16:287–297

    Google Scholar 

  • Singh A, Trivedi PC (2007) Fungi in the management of plant parasitic nematodes. Aavishkar, Jaipur, pp 398–425

    Google Scholar 

  • Spiegel Y, Chet I, Cohn E (1987) Use of chitin for controlling plant parasitic nematodes. II. Mode of action. Plant Soil 98:87–95

    Article  Google Scholar 

  • Spiegel Y, Chet I, Galper S, Sharon E, Cohn E (1991a) Use of chitin for controlling plant parasitic nematode. Plant Soil 98:337–345

    Article  Google Scholar 

  • Spiegel Y, Chon E, Galper S, Sharon E, Chet I (1991b) Evaluation of a newly isolated bacterium. Pseudomonas chitinolytica sp. nov. for controlling the root knot nematode Meloidogyne javanica. Biocontrol Sci Technol 1:115–125

    Article  Google Scholar 

  • St. Leger RJ, Joshi L, Bidochka MJ, Rizzo NW, Roberts D (1996) Characterization and ultrastructural localization of chitinases from Metarhizium anisopliae, Metarhizium flavoviride, and Beauveria bassiana during fungal invasion of host (Manduca sexta) cuticle. Appl Environ Microbiol 62:907–912

    Google Scholar 

  • Stepanova TV, Baryshnikova ZF, Chirkov MV, Zhimerikin BN, Ryabchenko NF (1996) Bacillus thuringiensis strains exhibiting multiple activity against a wide range of insects. Biotechnology 12:17–22

    Google Scholar 

  • Stevens C, Khan VA, Rodriguez-Kabana R, Ploper LD, Backman PA, Collins DJ, Brown JE, Wilson MA, Igwegbe ECK (2003) Integration of soil solarization with chemical, biological and cultural control for the management of soilborne diseases of vegetables. Plant Soil 253:493–506

    Article  CAS  Google Scholar 

  • Stirling GR (1991) Biological control of plant parasitic nematodes. CAB International, Wallingford, pp 179–192

    Google Scholar 

  • Suslow RV, Schroth MN (1982) Rhizobacteria of sugarbeet: effects of seed application and root colonization on yield. Phytopathology 72:199–206

    Article  Google Scholar 

  • Tang WH (1994) Yield increasing bacteria (YIB) and biological control of sheath blight of rice. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. Commonwealth Scientific and Industrial Research Organization, Adelaide, pp 267–278

    Google Scholar 

  • Thomashow LS, Weller DM (1991) Role of antibiotics and siderophores in biocontrol of take-all disease of wheat. In: Keister DL, Cregan PB (eds) The rhizosphere and plant growth. Kluwer Academic, Dordrecht, pp 245–253

    Chapter  Google Scholar 

  • Thomason IJ (1987) Challenge facing nematology: environmental risk with nematicide and need for few approaches. In: Vech JA, Dickson (eds) Vistas on nematology. Society of Nematologists, Hyattsville, MD, pp 449–447

    Google Scholar 

  • Tian H, Riggs RD, Crippen DL (2000) Control of soybean cyst nematode by chitinolytic bacteria with chitin substrates. J Nematol 32:370–376

    PubMed  CAS  Google Scholar 

  • Tian BY, Li N, Lian LH, Liu JW, Yang JK, Zhang KQ (2006) Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch Microbiol 186:297–305

    Article  PubMed  CAS  Google Scholar 

  • Tikhonov VE, Lopez-Llorca LV, Salinas J, Jansson HB (2002) Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and Verticillium suchlasporium. Fungal Genet Biol 35:67–78

    Article  PubMed  CAS  Google Scholar 

  • Trivedi PC, Mathur KM (1985) Studies on larval behavior of Meloidogyne incognita in mineral salts. Indian Zool 9:115–118

    Google Scholar 

  • Validov S, Mavrodi O, De La Fuente L, Boronin A, Weller D, Thomasho L, Mavrodi D (2005) Antagonistic activity among 2,4-diacetyl phloroglucinol producing fluorescent Pseudomonas sp. FEMS Microbiol Lett 242:249–256

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Varshney S, Dwivedi BK (2002) Integrated management of phytonematodes around mungbean pulse crop. Curr Nematol 13(12):91–103

    Google Scholar 

  • Verdejo S, Green CD, Podder AK (1988) Influence of Meloidogyne incognita on nodulation and growth of pea and blackgram. Nematologica 34:88–97

    Article  Google Scholar 

  • Walia KK, Gupta DC (1995) Neem is effective biocide against Meloidogyne javanica effecting vegetable crops. Dis Res 10:50–61

    Google Scholar 

  • Webster JM (1985) Interaction of Meloidogyne with fungi on crop plants. Biology and control. In: Sasser JN, Carter CC (eds) An advanced treatise on Meloidogyne, vol 1. North Carolina State University Graphics, Raleigh, NC, pp 183–192

    Google Scholar 

  • Weidenborner M, Kunz B (1993) Infuence of fermentation conditions on nematicidal activity of Pseudomonas fluorescens. Zeitschrift fur Pfleanzenkrankheiten und Pflanzenschuts 100:90

    Google Scholar 

  • Weller DM (1988) Biological control of soil-borne plant pathogens in the rhizosphere with bacteria. Annu Rev Phytopathol 26:379–407

    Article  Google Scholar 

  • Weller DM, Thomashow LS (1994) Current challenges in introducing beneficial microorganisms in to the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms: biotechnology and the release of GMO’s. VCH, Weinheim, pp 1–18

    Chapter  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardner BBM, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  PubMed  CAS  Google Scholar 

  • Westcott SW III, Kluepfel DA (1993) Inhibition of Criconemella xenoplax egg hatch by Pseudomonas aureofaciens. Phytopathology 83:1245–1249

    Article  Google Scholar 

  • Wharton DA (1980) Nematode egg shell. Parasitology 81:447–463

    Article  PubMed  CAS  Google Scholar 

  • Whitehead AG (1986) Techniques of applying nematicides to soil. Bull OE 16(2):335–341

    Google Scholar 

  • Williams-Woodward R, Davis RF, Eaker TH (2000) Reaction of dwarf holly cultivars to southern and peanut root-knot nematode infestation. Phytopathology 90:84

    Google Scholar 

  • Wilt RK, Smith RE (1970) Studies on interactions of aquatic bacteria and aquatic nematodes. Water Resour Res Inst Bull 701:1–6

    Google Scholar 

  • Winter MJ, Macpherson AHJ (2002) Neuronal uptake of pesticides disrupts chemosensory cells of nematodes. Parasitology 125:561–565

    PubMed  CAS  Google Scholar 

  • Wong CL, Willetts HJ (1969) Gall formation in aerial parts of plants inoculated with Meloidogyne jtzvanica. Nematology 15(3):425–428

    Article  Google Scholar 

  • Wright DJ (1981) Nematicides: mode of action and new approaches to chemical control. In: Zukerman BM, Rhode RA (eds) Plant parasitic nematodes, vol 3. Academic, New York, pp 421–449

    Chapter  Google Scholar 

  • Wyss U, Vossand B, Janson HB (1992) In-vitro observation on the infection of Meloidogyne incognita eggs by the zoospore fungus Cateneria unguillulae. Fundam Appl Nematol 15(2):113–139

    Google Scholar 

  • Zavaleta-Mejia E (1985) The effect of soil bacteria on Meloidogyne incognita (Kofoid and White) Chitwood infection. Dissert Abst Int B Sci Eng 46(4):108

    Google Scholar 

  • Zavaleta-Mejia E, and Van Gundy MN (1982) Effects of chitinase bacteria on Meloidogyne infection. J. Nematol. 14:475–476

    Google Scholar 

  • Zuckerman BM, Jasson HB (1984) Nematode chemotaxis and possible mechanisms of host/prey recognition. Annu Rev Phytopathol 22:95–113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Maheshwari, D.K. et al. (2013). Rhizobacteria for Management of Nematode Disease in Plants. In: Maheshwari, D. (eds) Bacteria in Agrobiology: Disease Management. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33639-3_14

Download citation

Publish with us

Policies and ethics