Parameter Identification and Model Ranking of Thomas Networks

  • Hannes Klarner
  • Adam Streck
  • David Šafránek
  • Juraj Kolčák
  • Heike Siebert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7605)


We propose a new methodology for identification and analysis of discrete gene networks as defined by René Thomas, supported by a tool chain: (i) given a Thomas network with partially known kinetic parameters, we reduce the number of acceptable parametrizations to those that fit time-series measurements and reflect other known constraints by an improved technique of coloured LTL model checking performing efficiently on Thomas networks in distributed environment; (ii) we introduce classification of acceptable parametrizations to identify most optimal ones; (iii) we propose two ways of visualising parametrizations dynamics wrt time-series data. Finally, computational efficiency is evaluated and the methodology is validated on bacteriophage λ case study.


Thomas network parameter identification model checking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)Google Scholar
  2. 2.
    Barnat, J., Brim, L., Krejci, A., Streck, A., Safranek, D., Vejnar, M., Vejpustek, T.: On Parameter Synthesis by Parallel Model Checking. IEEE/ACM Transactions on Computational Biology and Bioinformatics 9(3), 693–705 (2012)CrossRefGoogle Scholar
  3. 3.
    Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P., de Jong, H.: Efficient parameter search for qualitative models of regulatory networks using symbolic model checking. Bioinformatics 26(18), i603–i610 (2010)Google Scholar
  4. 4.
    Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods to biological regulatory networks: Extending Thomas’ asynchronous logical approach with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative Analysis of Regulatory Graphs: A Computational Tool Based on a Discrete Formal Framework. In: Benvenuti, L., De Santis, A., Farina, L. (eds.) Positive Systems. LNCIS, vol. 294, pp. 119–126. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  6. 6.
    Cline, M., et al.: Integration of biological networks and gene expression data using Cytoscape. Nat. Protocols 2(10), 2366–2382 (2007)CrossRefGoogle Scholar
  7. 7.
    Corblin, F., Fanchon, E., Trilling, L., Chaouiya, C., Thieffry, D.: Automatic Inference of Regulatory and Dynamical Properties from Incomplete Gene Interaction and Expression Data. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef, F., Walker, J.A., Trefzer, M.A. (eds.) IPCAT 2012. LNCS, vol. 7223, pp. 25–30. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  8. 8.
    Corblin, F., et al.: A declarative constraint-based method for analyzing discrete genetic regulatory networks. Biosystems 98(2), 91–104 (2009)CrossRefGoogle Scholar
  9. 9.
    de Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature Review. Journal of Computational Biology 9(1), 67–103 (2002)CrossRefGoogle Scholar
  10. 10.
    Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle. In: ISMB (Supplement of Bioinformatics) 2006, pp. 124–131 (2006)Google Scholar
  11. 11.
    Helikar, T., Konvalina, J., Heidel, J., Rogers, J.A.: Emergent decision-making in biological signal transduction networks. Proceedings of the National Academy of Sciences 105(6), 1913–1918 (2008)CrossRefGoogle Scholar
  12. 12.
    Klarner, H., Siebert, H., Bockmayr, A.: Time series dependent analysis of unparametrized thomas networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics 99(PrePrints) (2012) Google Scholar
  13. 13.
    Klarner, H., Streck, A., Safranek, D., Kolcak, J., Siebert, H.: Parameter identification and model ranking of Thomas networks. Technical Report FIMU-RS-2012-03, Masaryk University (2012)Google Scholar
  14. 14.
    Laubenbacher, R., Mendes, P.: A discrete approach to top-down modeling of biochemical networks. In: Kriete, A., Eils, R. (eds.) Computational Systems Biology, pp. 229–247. Elsevier Academic Press (2005)Google Scholar
  15. 15.
    Lee, W.-P., Tzou, W.-S.: Computational methods for discovering gene networks from expression data. Briefings in Bioinformatics 10(4), 408–423 (2009)Google Scholar
  16. 16.
    Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction of logical regulatory graphs. Theor. Comput. Sci. 412(21), 2207–2218 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Richard, A.: SMBioNet-1.4 User manual (2005)Google Scholar
  18. 18.
    Sánchez, L., Thieffry, D.: A logical analysis of the drosophila gap-gene system. Journal of Theoretical Biology 211(2), 115–141 (2001)CrossRefGoogle Scholar
  19. 19.
    Siebert, H., Bockmayr, A.: Incorporating Time Delays into the Logical Analysis of Gene Regulatory Networks. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI), vol. 4210, pp. 169–183. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks II. Immunity control in bacteriophage lambda. Bulletin of Mathematical Biology 57, 277–297 (1995)MATHGoogle Scholar
  21. 21.
    Thomas, R.: Regulatory networks seen as asynchronous automata: A logical description. Journal of Theoretical Biology 153(1), 1–23 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hannes Klarner
    • 1
  • Adam Streck
    • 2
  • David Šafránek
    • 2
  • Juraj Kolčák
    • 2
  • Heike Siebert
    • 1
  1. 1.Freie Universität BerlinBerlinGermany
  2. 2.Masaryk UniversityBrnoCzech Republic

Personalised recommendations