Evaluating Ontology Matchers Using Arbitrary Ontologies and Human Generated Heterogeneities

  • Nafisa Afrin Chowdhury
  • Dejing Dou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7566)


Automatic ontology matching is a hard problem. To address this problem many ontology matchers have evolved in the past several years. Consequently the evaluation of ontology matchers has become crucial in order to help improve a matcher’s performance. The evaluation frameworks used so far are limited to available pairs of ontologies in certain domains and require the reference alignments (i.e., gold standards) to be specified manually. In this paper we present a novel ontology matcher evaluation approach which can accept any OWL ontology as the source ontology. With little human efforts to specify the changes to the source ontology, our system can automatically construct the target ontology and generate the gold standard of correspondences. Compared to well-known evaluators (e.g., OAEI), our approach can provide more meaningful feedback besides traditional accuracy and completeness measures by indicating the performance of ontology matchers according to various types of heterogeneities.


ontology matching heterogeneity evaluation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
  3. 3.
    Cruz, I.F., Antonelli, F.P., Stroe, C.: Agreementmaker: Efficient matching for large real-world schemas and ontologies. PVLDB 2(2), 1586–1589 (2009)Google Scholar
  4. 4.
    David, J., Guillet, F., Briand, H.: Matching directories and OWL ontologies with AROMA. In: CIKM, pp. 830–831 (2006)Google Scholar
  5. 5.
    Doshi, P., Kolli, R., Thomas, C.: Inexact matching of ontology graphs using expectation-maximization. J. Web Sem. 7(2), 90–106 (2009)CrossRefGoogle Scholar
  6. 6.
    Euzenat, J.: An API for Ontology Alignment. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 698–712. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Euzenat, J., Shvaiko, P.: Ontology Matching. Springer (2007)Google Scholar
  8. 8.
    Hanif, M.S., Aono, M.: An efficient and scalable algorithm for segmented alignment of ontologies of arbitrary size. J. Web Sem. 7(4), 344–356 (2009)CrossRefGoogle Scholar
  9. 9.
    Jian, N., Hu, W., Cheng, G., Qu, Y.: FalconAO: Aligning Ontologies with Falcon. In: K-CAP Integrating Ontologies Workshop, pp. 85–91 (2005)Google Scholar
  10. 10.
    Lambrix, P., Tan, H.: A Tool for Evaluating Ontology Alignment Strategies. In: Spaccapietra, S., Atzeni, P., Fages, F., Hacid, M.-S., Kifer, M., Mylopoulos, J., Pernici, B., Shvaiko, P., Trujillo, J., Zaihrayeu, I. (eds.) Journal on Data Semantics VIII. LNCS, vol. 4380, pp. 182–202. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Noy, N.F., Musen, M.A.: PROMPT: Algorithm and Tool for Automated Ontology Merging and Alignment. In: AAAI/IAAI, pp. 450–455 (2000)Google Scholar
  12. 12.
    Rosoiu, M.E., dos Santos, C.T., Euzenat, J.: Ontology matching benchmarks: generation and evaluation. In: The Sixth International Workshop on Ontology Matching (2011)Google Scholar
  13. 13.
    Shvaiko, P., Euzenat, J.: Ontology Matching: State of the Art and Future Challenges. IEEE Transactions on Knowledge and Data Engineering (2011) (accepted)Google Scholar
  14. 14.
    Visser, P.R.S., Jones, D.M., Bench-capon, T.J.M., Shave, M.J.R.: An Analysis of Ontology Mismatches; Heterogeneity Versus Interoperability. In: AAAI 1997 Spring Symposium on Ontological Engineering, pp. 164–172 (1997)Google Scholar
  15. 15.
    Wang, P., Xu, B.: Lily: Ontology Alignment Results for OAEI 2009. In: The Fourth International Workshop on Ontology Matching, pp. 186–192 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nafisa Afrin Chowdhury
    • 1
  • Dejing Dou
    • 1
  1. 1.Department of Computer and Information ScienceUniversity of OregonEugeneUSA

Personalised recommendations