Comparative Performance of State-of-the-Art Classifiers in Computer-Aided Detection for CT Colonography

  • Sang Ho Lee
  • Janne J. Näppi
  • Hiroyuki Yoshida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7601)


Several effective machine learning and pattern recognition schemes have been developed for medical imaging. Although many classifiers have been used with computer-aided detection (CAD) for computed tomographic colonography (CTC), little is known about their relative performance. This pilot study compares the performance of several state-of-the-art classifiers and feature selection methods in the classification of lesion candidates detected by CAD in CTC. There were four classifiers: linear discriminant analysis (LDA), radial basis function support vector machine (RBF-SVM), random forests (RF), and gradient boosting machine (GBM). There were five feature selection methods: sequential forward inclusion (SFI) of principal components (PCs), univariate filtering (UF), UF of PCs, recursive feature elimination (RFE), and RFE of PCs. A strategy of using all available features was tested also. For evaluation, 232,211 detections by a CAD system on 1,211 patients were subsampled randomly to create 10 different populations of 500 true-positive (TP) and 500 false-positive (FP) detections. The classifier performance was evaluated by use of the area under the receiver operating characteristic curve of 3 repeated 10-fold cross-validations. According to the result, the discrimination performance of the RBF-SVM classifier with feature selection by the RFE of PCs compared favorably with other methods, although no single classifier outperformed other classifiers under all conditions and feature selection schemes.


Classification feature selection comparative performance machine learning virtual colonoscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yoshida, H., Näppi, J.: Three-Dimensional Computer-Aided Diagnosis Scheme for Detection of Colonic Polyps. IEEE Trans. Med. Imaging 20, 1261–1274 (2001)CrossRefGoogle Scholar
  2. 2.
    Yoshida, H., Masutani, Y., MacEneaney, P., Rubin, D.T., Dachman, A.H.: Computerized Detection of Colonic Polyps at CT Colonography on the Basis of Volumetric Features: Pilot Study. Radiology 222, 327–336 (2002)CrossRefGoogle Scholar
  3. 3.
    Summers, R.M., Jerebko, A.K., Franaszek, M., Malley, J.D., Johnson, C.D.: Colonic Polyps: Complementary Role of Computer-Aided Detection in CT Colonography. Radiology 225, 391–399 (2002)CrossRefGoogle Scholar
  4. 4.
    Näppi, J., Yoshida, H.: Automated Detection of Polyps with CT Colonography: Evaluation of Volumetric Features for Reduction of False-Positive Findings. Acad. Radiol. 9, 386–397 (2002)CrossRefGoogle Scholar
  5. 5.
    Näppi, J., Yoshida, H.: Feature-Guided Analysis for Reduction of False Positives in CAD of Polyps for Computed Tomographic Colonography. Med. Phys. 30, 1592–1601 (2003)CrossRefGoogle Scholar
  6. 6.
    Suzuki, K., Zhang, J., Xu, J.: Massive-Training Artificial Neural Network Coupled with Laplacian-Eigenfunction-Based Dimensionality Reduction for Computer-Aided Detection of Polyps in CT Colonography. IEEE Trans. Med. Imaging 29, 1907–1917 (2010)CrossRefGoogle Scholar
  7. 7.
    Näppi, J., Nagata, K.: Sources of False Positives in Computer-Assisted CT Colonography. Abdom. Imaging 36, 153–164 (2011)CrossRefGoogle Scholar
  8. 8.
    Yoshida, H., Näppi, J.: CAD in CT Colonography without and with Oral Contrast Agents: Progress and Challenges. Comput. Med. Imaging Graph. 31, 267–284 (2007)CrossRefGoogle Scholar
  9. 9.
    Näppi, J.J., Regge, D., Yoshida, H.: Ensemble Detection of Colorectal Lesions for CT Colonography. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 60–67. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  10. 10.
    Nadler, M., Smith, E.P.: Pattern Recognition Engineering. Wiley, New York (1993)zbMATHGoogle Scholar
  11. 11.
    Martinez, A.M., Kak, A.C.: PCA versus LDA. IEEE Trans. Pattern Anal. Mach. Intell. 23, 228–233 (2001)CrossRefGoogle Scholar
  12. 12.
    Mankiewicz, R.: The Story of Mathematics, p. 158. Princeton University Press (2001)Google Scholar
  13. 13.
    Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene Selection for Cancer Classification Using Support Vector Machines. Mach. Learn. 46, 389–422 (2002)zbMATHCrossRefGoogle Scholar
  14. 14.
    Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.): Advances in Kernel Methods: Support Vector Learning. MIT Press, Cambridge (1999)Google Scholar
  15. 15.
    Breiman, L.: Random Forests. Mach. Learn. 45, 5–32 (1999)CrossRefGoogle Scholar
  16. 16.
    Svetnik, V., Liaw, A., Tong, C., Wang, T.: Application of Breiman’s Random Forest to Modeling Structure-Activity Relationships of Pharmaceutical Molecules. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 334–343. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  17. 17.
    Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  18. 18.
    Friedman, J.H.: Greedy Function Approximation: A Gradient Boosting Machine. Ann. Statist. 29, 1189–1232 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Näppi, J., Frimmel, H., Dachman, A., Yoshida, H.: A New High-Performance CAD Scheme for the Detection of Polyps in CT Colonography. In: SPIE Medical Imaging 2004, vol. 5370, pp. 839–848 (2004)Google Scholar
  20. 20.
    Näppi, J., Yoshida, H., Regge, D.: Accuracy of Computer-Aided Detection in Detecting Flat Lesions in CT Colonography. Insights into Imaging 3(S1), 334 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sang Ho Lee
    • 1
  • Janne J. Näppi
    • 1
  • Hiroyuki Yoshida
    • 1
  1. 1.3D Imaging Research, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations