Application of CT Acquisition Parameters as Features in Computer-Aided Detection for CT Colonography

  • Janne J. Näppi
  • Don Rockey
  • Daniele Regge
  • Hiroyuki Yoshida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7601)


Studies have indicated that the acquisition parameters of computed tomography (CT) scans can have significant effect on the accuracy of computer-aided detection (CAD) in CT colonography. We investigated whether these parameters can be used as external features with conventional image-based features to improve CAD performance. A CAD scheme was trained with the CT colonography data of 886 patients, and it was tested with an independent set of 705 CT colonography cases. The results indicate that some CT acquisition parameters can be used successfully as features of the detected lesion candidates for improving the detection accuracy of CAD for flat lesions and carcinomas.


Computed tomographic colonography computer-aided detection CT acquisition polyp detection virtual colonoscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bushberg, J., Seibert, J., Leidholdt Jr., E., Boone, J.: The essential physics of medical imaging, 2nd edn. Lippincott Williams & Wilkins, Philadephia (2002)Google Scholar
  2. 2.
    Chakraborty, D.: Analysis of location specific observer performance data: validated extension of the jackknife free-response (JAFROC) method. Acad. Radiol. 13, 1187–1193 (2006)CrossRefGoogle Scholar
  3. 3.
    Chowdhury, T., Whelan, P., Ghita, O., Sezille, N., Foley, S.: Development of a synthetic phantom for the selection of optimal scanning parameters in CAD-CT colonography. Med. Eng. Phys. 29, 858–867 (2007)CrossRefGoogle Scholar
  4. 4.
    Kim, S., Lee, J., Shin, C., Kim, H., Lee, J., et al.: Effects of spatial resolution and tube current on computer-aided detection of polyps on CT colonographic images: phantom study. Radiology 248, 492–503 (2008)CrossRefGoogle Scholar
  5. 5.
    Näppi, J., Yoshida, H.: Automated detection of polyps in CT colonography: evaluation of volumetric features for reduction of false positives. Acad. Radiol. 9, 386–397 (2002)CrossRefGoogle Scholar
  6. 6.
    Näppi, J., Yoshida, H.: Feature-guided analysis for reduction of false positives in CAD of polyps for CT colonography. Med. Phys. 30, 1592–1601 (2003)CrossRefGoogle Scholar
  7. 7.
    Näppi, J., Yoshida, H.: Fully automated three-dimensional detection of polyps in fecal-tagging CT colonography. Acad. Radiol. 25, 287–300 (2007)CrossRefGoogle Scholar
  8. 8.
    Näppi, J., Yoshida, H.: Adaptive correction of the pseudo-enhancement of CT attenuation for fecal-tagging CT colonography. Med. Image Anal. 12, 413–426 (2008)CrossRefGoogle Scholar
  9. 9.
    Prokop, M., Galanski, M.: Spiral and multislice computed tomography of the body. Thieme Verlag, Ludwigsburg (2003)Google Scholar
  10. 10.
    Sundaram, P., Beaulieu, C., Paik, D., Schraedley-Desmond, P., Napel, S.: CT colonography: does improved z resolution help computer-aided polyp detection? Med. Phys. 30, 2663–2674 (2003)CrossRefGoogle Scholar
  11. 11.
    Yoshida, H., Näppi, J.: Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans. Med. Imaging 20, 1261–1274 (2001)CrossRefGoogle Scholar
  12. 12.
    Yoshida, H., Näppi, J., MacEneaney, P., Rubin, D., Dachman, A.: Computer-aided diagnosis scheme for detection of polyps at CT colonography. Radiographics 22, 963–979 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Janne J. Näppi
    • 1
  • Don Rockey
    • 2
  • Daniele Regge
    • 3
  • Hiroyuki Yoshida
    • 1
  1. 1.3D Imaging Research, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.University of Texas Southwestern Medical SchoolDallasUSA
  3. 3.Institute for Cancer Research and TreatmentTurinItaly

Personalised recommendations