Advertisement

Computer-Aided Detection for Ultra-Low-Dose CT Colonography

  • Janne J. Näppi
  • Masanori Imuta
  • Yasuyuki Yamashita
  • Hiroyuki Yoshida
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7601)

Abstract

To screen large populations for colorectal cancer, it may be necessary to reduce the radiation dose of computed tomographic colonography (CTC) examinations. We compared the accuracy of computer-aided detection (CAD) in standard-dose (SD) CTC with that in ultra-low-dose (ULD) CTC. We also assessed the effect of linear and nonlinear denoising methods on CAD performance in ULD CTC. The CAD system was trained to detect polyps with 43 SD CTC studies. It was tested with 24 clinical studies, where the supine series were acquired with SD CTC and the prone series were acquired with ULD CTC. The polyp detection accuracy of CAD was significantly lower in ULD CTC than in SD CTC. Linear denoising of ULD CTC images improved the detection accuracy for large polyps, but it reduced sensitivity for small polyps. However, with nonlinear denoising, the detection accuracy of CAD in ULD CTC was not significantly different from that in SD CTC.

Keywords

Computer-aided detection dose diffusion polyp detection virtual colonoscopy computed tomographic colonography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brenner, D., Georgsson, M.: Mass screening with CT colonography: should the radiation exposure be of concern? Gastroenterology 129, 328–337 (2005)CrossRefGoogle Scholar
  2. 2.
    Chakraborty, D., Berbaum, K.: Observer studies involving detection and localization: modeling, analysis, and validation. Med. Phys. 31, 2313–2330 (2004)CrossRefGoogle Scholar
  3. 3.
    Fisichella, V., Båth, M., Allansdotter, J., Jäderling, F., Bergsten, T., Persson, U., Mellingen, K., Hellström, M.: Evaluation of image quality and lesion perception by human readers on 3D CT colonography: comparison of standard and low radiation dose. Eur. Radiol. 20, 630–639 (2010)CrossRefGoogle Scholar
  4. 4.
    Berrington de González, A., Kim, K., Landsdorp-Vogelaar, I., Rutter, C., et al.: Radiation-related cancer risks from CT colonography screening: a risk-benefit analysis. Am. J. Roentgenol. 196, 816–823 (2011)CrossRefGoogle Scholar
  5. 5.
    Johnson, C., Chen, M.H., Toleday, A., Heiken, J., Dachman, A., Kuo, M., et al.: Accuracy of CT colonography for detection of large adenomas and cancers. N. Engl. J. Med. 359, 1207–1217 (2008)CrossRefGoogle Scholar
  6. 6.
    Johnson, C., Dachman, A.: CT colonography: the next colon screening examination? Radiology 216, 331–341 (2000)Google Scholar
  7. 7.
    Kalra, M., Woisetschläger, M., Dahlström, N., Singh, S., Linblom, M., et al.: Radiation dose reduction with sinogram affirmed iterative reconstruction technique for abdominal computed tomography. J. Comput. Assist. Tomogr. 36, 339–346 (2012)CrossRefGoogle Scholar
  8. 8.
    Kim, D., Pickhardt, P., Taylor, A., Leung, W., Winter, T., Hinshaw, J., Gopal, D., Reichelderfer, M., Hsu, R., Pfau, P.: CT colonography versus colonoscopy for the detection of advanced neoplasia. N. Engl. J. Med. 357, 1403–1412 (2007)CrossRefGoogle Scholar
  9. 9.
    Kim, S., Lee, J., Shin, C., Kim, H., Lee, J., et al.: Effects of spatial resolution and tube current on computer-aided detection of polyps on CT colonographic images: phantom study. Radiology 248, 492–503 (2008)CrossRefGoogle Scholar
  10. 10.
    Kiss, G., Drisis, S., Bielen, D., Maes, F., Van Cleynenbreugel, J., et al.: Computer-aided detection of colonic polyps using low-dose CT acquisitions. Acad. Radiol. 13, 1062–1071 (2006)CrossRefGoogle Scholar
  11. 11.
    Laghi, A., Iafrate, F., Rengo, M., Hassan, C.: Colorectal cancer screening: the role of CT colonogrpahy. World J. Gastroenterol. 16, 3987–3994 (2010)CrossRefGoogle Scholar
  12. 12.
    Näppi, J., Frimmel, H., Dachman, A., Yoshida, H.: A new high-performance CAD scheme for the detection of polyps in CT colonography. In: Fitzpatrick, J., Sonka, M. (eds.) SPIE Medical Imaging 2004, vol. 5370, pp. 839–848 (2004)Google Scholar
  13. 13.
    Näppi, J., Yoshida, H.: Automated detection of polyps in CT colonography: evaluation of volumetric features for reduction of false positives. Acad. Radiol. 9, 386–397 (2002)CrossRefGoogle Scholar
  14. 14.
    Näppi, J., Yoshida, H.: Fully automated three-dimensional detection of polyps in fecal-tagging CT colonography. Acad. Radiol. 25, 287–300 (2007)CrossRefGoogle Scholar
  15. 15.
    Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE T. Pattern Anal. 12, 629–639 (1990)CrossRefGoogle Scholar
  16. 16.
    Pickhardt, P., Choi, J., Hwang, I., Butler, J., Puckett, M., Hildebrandt, H., Wong, R., Nugent, P., Mysliwiec, P., Schindler, W.: Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. N. Engl. J. Med. 349, 2191–2200 (2003)CrossRefGoogle Scholar
  17. 17.
    Schoonenberg, G.A.F., Vries, A.H., de Grigorescu, S.E., Peters, J., Vilanova, A., Truyen, R., Stoker, J., Gerritsen, F.A.: Effects of filtering on colorectal polyp detection in ultra low dose CT. In: Manduca, A., Amini, A. (eds.) SPIE Medical Imaging: Physiology, Function, and Structure from Medical Images, vol. 6143, pp. 18–1–18–10. SPIE, San Diego (2006)Google Scholar
  18. 18.
    Thorne, M.: Background radiation: natural and man-made. Radiol. Prot. 23, 29–42 (2003)CrossRefGoogle Scholar
  19. 19.
    Yoshida, H., Näppi, J.: Three-dimensional computer-aided diagnosis scheme for detection of colonic polyps. IEEE Trans. Med. Imaging 20, 1261–1274 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Janne J. Näppi
    • 1
  • Masanori Imuta
    • 2
  • Yasuyuki Yamashita
    • 2
  • Hiroyuki Yoshida
    • 1
  1. 1.3D Imaging Research, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Department of Diagnostic RadiologyKumamoto UniversityKumamotoJapan

Personalised recommendations