Efficient Topological Cleaning for Visual Colon Surface Flattening

  • Rui Shi
  • Wei Zeng
  • Jerome Zhengrong Liang
  • Xianfeng David Gu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7601)


Conformal mapping provides a unique way to flatten the three dimensional (3D) anatomically-complicated colon wall. Visualizing the flattened 2D colon wall supplies an alternative means for the task of detecting abnormality as compared to the conventional endoscopic views. In addition to the visualization, the flattened colon wall carries supplementary geometry and texture information for computer aided detection of abnormality. It is hypothesized that utilizing both the original 3D and the flattened 2D colon walls shall improve the detection capacity of currently available computed tomography colonography. One of the major challenges for the conformal colon flattening is how to make the input colon wall inner surface to be genus zero, as this is required by the flatten algorithm and will guarantee high flatten quality. This paper describes an efficient topological cleaning algorithm for the conformal colon flattening pipeline. Starting from a segmented colon wall, the Marching Cube algorithm was first applied to generate the surface, then we apply our topological clearance algorithm to remove the topological outliers to guarantee the output surface is exactly genus 0. The cleared or denoised colon surface was then flattened by an Ricci flow. The pipeline was tested by 14 patient datasets with comparison to our previous work.


Flattening conformal mapping homotopy Ricci flow virtual colonoscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbarello, E., Cornalba, M., Griffiths, P., Harris, J.: Topics in the Theory of Algebraic Curves (1938)Google Scholar
  2. 2.
    Balogh, E., Sorantin, E., Nyul, L.G., Palagyi, K., Kuba, A., Werkgartner, G., Spuller, E.: Colon unraveling based on electronic field: Recent progress and future work. In: Proceedings SPIE, pp. 713–721 (2002)Google Scholar
  3. 3.
    Bartrol, A.V., Wegenkittl, R., König, A., Gröller, E., Sorantin, E., Medgraph, T.: Virtual colon flattening (2001)Google Scholar
  4. 4.
    Erickson, J., Whittlesey, K.: Greedy optimal homotopy and homology generators. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pp. 1038–1046 (2005)Google Scholar
  5. 5.
    Haker, S., Angenent, S., Kikinis, R.: Nondistorting flattening maps and the 3d visualization of colon ct images. IEEE Trans. on Medical Imaging 19, 665–670 (2000)CrossRefGoogle Scholar
  6. 6.
    Hamilton, R.S.: The Ricci flow on surfaces. Mathematics and general relativity (Santa Cruz, CA, 1986). Contemp. Math. Amer. Math. Soc. Providence, RI 71 (1988)Google Scholar
  7. 7.
    Hong, L., Kaufman, A., Wei, Y., Viswambharan, A., Wax, M., Liang, Z.: 3d virtual colonoscopy. In: IEEE Symposium on Frontier in Biomedical Visualization, pp. 26–32 (1995)Google Scholar
  8. 8.
    Hong, L., Liang, Z., Viswambharan, A., Kaufman, A., Wax, M.: Reconstruction and visualization of 3d models of the colonic surface. IEEE Transactions on Nuclear Science, 1297–1302 (1997)Google Scholar
  9. 9.
    Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.: Conformal virtual colon flattening. In: ACM Symposium on Solid and Physical Modeling, pp. 85–94 (2006)Google Scholar
  10. 10.
    Hong, W., Qiu, F., Kaufman, A.: A pipeline for computer aided polyp detection. IEEE Transactions on Visualization and Computer Graphics 12, 861–868 (2006)CrossRefGoogle Scholar
  11. 11.
    Jin, M., Kim, J., Gu, X.D.: Discrete surface ricci flow: Theory and applications. In: IMA Conference on the Mathematics of Surfaces, pp. 209–232 (2007)Google Scholar
  12. 12.
    Massey, W.: Algebraic Topology: An Introduction. Springer (1967)Google Scholar
  13. 13.
    Paik, D., Beaulieu, C., Jeffrey, R., Karadi, C.A., Napel, S.: Visualization modes for ct colonography using cylindrical and planar map projections. Journal of Computer Assisted Tomography, 179–188 (2000)Google Scholar
  14. 14.
    Pickhardt, P.J., Choi, J.R., Hwang, I., Butler, J.A., Puckett, M.L., Hildebrandt, H.A., Wong, R.K., Nugent, P.A., Mysliwiec, P.A., Schindler, W.R.: Computed tomographic virtual colonoscopy to screen for colorectal neoplasia in asymptomatic adults. New England Journal of Medicine 349(23), 2191–2200 (2003)CrossRefGoogle Scholar
  15. 15.
    Hong, W., Qiu, F., Kaufman, A.: A pipeline for computer aided polyp detection. IEEE Transactions on Visualization and Computer Graphics, 861–868 (2006)Google Scholar
  16. 16.
    Luboldt, W., Steiner, P., Bauerfeind, P., Pelkonen, P., Debatin, J.: Detection of mass lesions with mr colonoscopy: Preliminary report. Radiology 207, 59–65 (1998)Google Scholar
  17. 17.
    Wang, S., Li, L., Cohen, H., Mankes, S., Chen, J., Liang, Z.: An em approach to map solution of segmenting tissue mixture percentages with application to ct-based virtual colonoscopy. IEEE Transactions on Medical Imaging 28, 297–310 (2009)CrossRefGoogle Scholar
  18. 18.
    Wang, Z., Li, B., Liang, Z.: Feature-based texture display for detection of colonic polyps on flattened colon volume. In: Intl. Conf. of IEEE Engineering in Medicine and Biology (2005)Google Scholar
  19. 19.
    Zeng, W., Samaras, D., Gu, X.D.: Ricci flow for 3D shape analysis. PAMI 32(4), 662–677 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Rui Shi
    • 1
  • Wei Zeng
    • 2
  • Jerome Zhengrong Liang
    • 1
  • Xianfeng David Gu
    • 1
  1. 1.Department of Computer Science, Department of RadiologyStony Brook UniversityStony BrookUSA
  2. 2.School of Computing & Information SciencesFlorida International UniversityMiamiUSA

Personalised recommendations