Skip to main content

Optimal Medial Surface Generation for Anatomical Volume Representations

  • Conference paper
Abdominal Imaging. Computational and Clinical Applications (ABD-MICCAI 2012)

Abstract

Medial representations are a widely used technique in abdominal organ shape representation and parametrization. Those methods require good medial manifolds as a starting point. Any medial surface used to parameterize a volume should be simple enough to allow an easy manipulation and complete enough to allow an accurate reconstruction of the volume. Obtaining good quality medial surfaces is still a problem with current iterative thinning methods. This forces the usage of generic, pre-calculated medial templates that are adapted to the final shape at the cost of a drop in volume reconstruction. This paper describes an operator for generation of medial structures that generates clean and complete manifolds well suited for their further use in medial representations of abdominal organ volumes. While being simpler than thinning surfaces, experiments show its high performance in volume reconstruction and preservation of medial surface main branching topology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blum, H.: A transformation for extracting descriptors of shape. MIT Press (1967)

    Google Scholar 

  2. Brechbuehler, C., Gerig, G., Kuebler, O.: Surface parametrization and shape description, pp. 80–89 (1992)

    Google Scholar 

  3. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE TMI 23(8), 949–958 (2003)

    Google Scholar 

  4. Heimann, T., van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imag. 28(8), 1251–1265 (2009)

    Article  Google Scholar 

  5. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. Grap. Mod. Imag. Process. 56(6), 462–478 (1994)

    Article  Google Scholar 

  6. Linguraru, M.G., Sandberg, J.A., Li, Z., Shah, F., Summers, R.M.: Automated segmentation and quanitification of liver and spleen from ct images using normalized probabilistic atlases and enhancement. Medical Physics 37(2), 771–783 (2010)

    Article  Google Scholar 

  7. Liu, H., Liu, W., Latecki, L.J.: Convex shape decomposition. In: CVPR, pp. 97–104 (2010)

    Google Scholar 

  8. Lopez, A.M., Lumbreras, F., Serrat, J., Villanueva, J.J.: Evaluation of methods for ridge and valley detection. IEEE Trans. Pat. Ana. Mach. Intel. 21(4), 327–335 (1999)

    Article  Google Scholar 

  9. Pizer, S.M., Thomas Fletcher, P.: Deformable M-Reps for 3D medical image segmentation. Int. J. Comp. Vis. 55(2), 85–106 (2003)

    Article  Google Scholar 

  10. Pudney, C.: Distance-ordered homotopic thinning: A skeletonization algorithm for 3D digital images. Comp. Vis. Imag. Underst. 72(2), 404–413 (1998)

    Article  Google Scholar 

  11. Reyes, M., González Ballester, M.A., Li, Z., Kozic, N., Chin, S., Summers, R.M., Linguraru, M.G.: Anatomical variability of organs via principal factor analysis from the construction of an abdominal probabilistic atlas. In: IEEE ISBI, pp. 682–685 (2009)

    Google Scholar 

  12. Stough, J.V., Broadhurst, R.E., Pizer, S.M., Chaney, E.L.: Regional Appearance in Deformable Model Segmentation. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 532–543. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Styner, M., Gerig, G., Lieberman, J., Jones, D., Weinberger, D.: Statistical shape analysis of neuroanatomical structures based on medial models. Medical Image Analysis 7(3), 207–220 (2003); Functional Imaging and Modeling of the Heart

    Article  Google Scholar 

  14. Styner, M., Lieberman, J.A., Pantazis, D., Gerig, G.: Boundary and medial shape analysis of the hippocampus in schizophrenia. Medical Image Analysis 8(3), 197–203 (2004)

    Article  Google Scholar 

  15. Sun, H., Avants, B.B., Frangi, A.F., Sukno, F., Gee, J.C., Yushkevich, P.A.: Cardiac Medial Modeling and Time-Course Heart Wall Thickness Analysis. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 766–773. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  16. Sun, H., Frangi, A.F., Wang, H., Sukno, F.M., Tobon-Gomez, C., Yushkevich, P.A.: Automatic Cardiac MRI Segmentation Using a Biventricular Deformable Medial Model. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 468–475. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Vera, S., Gil, D., Borràs, A., Sánchez, X., Pérez, F., Linguraru, M.G., González Ballester, M.A.: Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 223–230. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Yushkevich, P.A.: Continuous medial representation of brain structures using the biharmonic PDE. NeuroImage 45(1), 99–110 (2009)

    Article  MathSciNet  Google Scholar 

  19. Yushkevich, P., Zhang, H., Gee, J.: Continuous medial representation for anatomical structures. IEEE Trans. Medical Imaging 25(12), 1547–1564 (2006)

    Article  Google Scholar 

  20. Yushkevich, P.A., Zhang, H., Simon, T.J., Gee, J.C.: Structure-specific statistical mapping of white matter tracts. NeuroImage 41(2), 448–461 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vera, S., González, M.A., Linguraru, M.G., Gil, D. (2012). Optimal Medial Surface Generation for Anatomical Volume Representations. In: Yoshida, H., Hawkes, D., Vannier, M.W. (eds) Abdominal Imaging. Computational and Clinical Applications. ABD-MICCAI 2012. Lecture Notes in Computer Science, vol 7601. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33612-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33612-6_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33611-9

  • Online ISBN: 978-3-642-33612-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics