Optimal Medial Surface Generation for Anatomical Volume Representations

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7601)


Medial representations are a widely used technique in abdominal organ shape representation and parametrization. Those methods require good medial manifolds as a starting point. Any medial surface used to parameterize a volume should be simple enough to allow an easy manipulation and complete enough to allow an accurate reconstruction of the volume. Obtaining good quality medial surfaces is still a problem with current iterative thinning methods. This forces the usage of generic, pre-calculated medial templates that are adapted to the final shape at the cost of a drop in volume reconstruction. This paper describes an operator for generation of medial structures that generates clean and complete manifolds well suited for their further use in medial representations of abdominal organ volumes. While being simpler than thinning surfaces, experiments show its high performance in volume reconstruction and preservation of medial surface main branching topology.


Medial surface representation volume reconstruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Blum, H.: A transformation for extracting descriptors of shape. MIT Press (1967)Google Scholar
  2. 2.
    Brechbuehler, C., Gerig, G., Kuebler, O.: Surface parametrization and shape description, pp. 80–89 (1992)Google Scholar
  3. 3.
    Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE TMI 23(8), 949–958 (2003)Google Scholar
  4. 4.
    Heimann, T., van Ginneken, B., Styner, M.A., Arzhaeva, Y., Aurich, V.: Comparison and evaluation of methods for liver segmentation from CT datasets. IEEE Trans. Med. Imag. 28(8), 1251–1265 (2009)CrossRefGoogle Scholar
  5. 5.
    Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. Grap. Mod. Imag. Process. 56(6), 462–478 (1994)CrossRefGoogle Scholar
  6. 6.
    Linguraru, M.G., Sandberg, J.A., Li, Z., Shah, F., Summers, R.M.: Automated segmentation and quanitification of liver and spleen from ct images using normalized probabilistic atlases and enhancement. Medical Physics 37(2), 771–783 (2010)CrossRefGoogle Scholar
  7. 7.
    Liu, H., Liu, W., Latecki, L.J.: Convex shape decomposition. In: CVPR, pp. 97–104 (2010)Google Scholar
  8. 8.
    Lopez, A.M., Lumbreras, F., Serrat, J., Villanueva, J.J.: Evaluation of methods for ridge and valley detection. IEEE Trans. Pat. Ana. Mach. Intel. 21(4), 327–335 (1999)CrossRefGoogle Scholar
  9. 9.
    Pizer, S.M., Thomas Fletcher, P.: Deformable M-Reps for 3D medical image segmentation. Int. J. Comp. Vis. 55(2), 85–106 (2003)CrossRefGoogle Scholar
  10. 10.
    Pudney, C.: Distance-ordered homotopic thinning: A skeletonization algorithm for 3D digital images. Comp. Vis. Imag. Underst. 72(2), 404–413 (1998)CrossRefGoogle Scholar
  11. 11.
    Reyes, M., González Ballester, M.A., Li, Z., Kozic, N., Chin, S., Summers, R.M., Linguraru, M.G.: Anatomical variability of organs via principal factor analysis from the construction of an abdominal probabilistic atlas. In: IEEE ISBI, pp. 682–685 (2009)Google Scholar
  12. 12.
    Stough, J.V., Broadhurst, R.E., Pizer, S.M., Chaney, E.L.: Regional Appearance in Deformable Model Segmentation. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 532–543. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Styner, M., Gerig, G., Lieberman, J., Jones, D., Weinberger, D.: Statistical shape analysis of neuroanatomical structures based on medial models. Medical Image Analysis 7(3), 207–220 (2003); Functional Imaging and Modeling of the HeartCrossRefGoogle Scholar
  14. 14.
    Styner, M., Lieberman, J.A., Pantazis, D., Gerig, G.: Boundary and medial shape analysis of the hippocampus in schizophrenia. Medical Image Analysis 8(3), 197–203 (2004)CrossRefGoogle Scholar
  15. 15.
    Sun, H., Avants, B.B., Frangi, A.F., Sukno, F., Gee, J.C., Yushkevich, P.A.: Cardiac Medial Modeling and Time-Course Heart Wall Thickness Analysis. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 766–773. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  16. 16.
    Sun, H., Frangi, A.F., Wang, H., Sukno, F.M., Tobon-Gomez, C., Yushkevich, P.A.: Automatic Cardiac MRI Segmentation Using a Biventricular Deformable Medial Model. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 468–475. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    Vera, S., Gil, D., Borràs, A., Sánchez, X., Pérez, F., Linguraru, M.G., González Ballester, M.A.: Computation and Evaluation of Medial Surfaces for Shape Representation of Abdominal Organs. In: Yoshida, H., Sakas, G., Linguraru, M.G. (eds.) Abdominal Imaging 2011. LNCS, vol. 7029, pp. 223–230. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Yushkevich, P.A.: Continuous medial representation of brain structures using the biharmonic PDE. NeuroImage 45(1), 99–110 (2009)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yushkevich, P., Zhang, H., Gee, J.: Continuous medial representation for anatomical structures. IEEE Trans. Medical Imaging 25(12), 1547–1564 (2006)CrossRefGoogle Scholar
  20. 20.
    Yushkevich, P.A., Zhang, H., Simon, T.J., Gee, J.C.: Structure-specific statistical mapping of white matter tracts. NeuroImage 41(2), 448–461 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Alma IT SystemsBarcelonaSpain
  2. 2.Computer Vision Center, Comp. Science Dep.Universitat Autònoma de BarcelonaSpain
  3. 3.Sheikh Zayed Institute for Pediatric Surgical InnovationChildren’s National Medical CenterWashington DCUSA

Personalised recommendations