Semi-automatic Discrimination of Normal Tissue and Liver Cancer Lesions in Contrast Enhanced X-Ray CT-Scans

  • Sanat Upadhyay
  • Manos Papadakis
  • Saurabh Jain
  • Gregory Gladish M.D.
  • Ioannis A. Kakadiaris
  • Robert Azencott
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7601)

Abstract

In this paper we present a set of 3D-rigid motion invariant texture features. We experimentally establish that when they are combined with mean attenuation intensity differences the new augmented features are capable of discriminating normal from abnormal liver tissue in arterial phase contrast enhanced X-ray CT–scans with high sensitivity and specificity. To extract these features CT-scans are processed in their native dimensionality. We experimentally observe that the 3D-rotational invariance of the proposed features improves the clustering of the feature vectors extracted from normal liver tissue samples.

Keywords

Liver cancer 3D-texture classification rotationally invariant features soft tissue discrimination 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-massieh, N.H., Hadhoud, M.M., Amin, K.M.: Automatic liver tumor segmentation from ct scans with knowledge-based constraints. In: 5th Cairo International Biomedical Engineering Conference, pp. 215–218. IEEE (December 2010)Google Scholar
  2. 2.
    Chen, T., Metaxas, D.: A hybrid framework for 3D medical image segmentation. Journal of Medical Image Analysis 9, 547–565 (2005)CrossRefGoogle Scholar
  3. 3.
    Haralick, R.M., Shanmugam, K., Dinstein, I.: Textural features for image classification. IEEE Transactions on Systems, Man and Cybernetics SMC-3(6), 610–621 (1973)CrossRefGoogle Scholar
  4. 4.
    Jain, S., Papadakis, M., Upadhyay, S., Azencott, R.: Rigid-motion-invariant classification of 3-D textures. IEEE Transactions on Image Processing 21(5), 2449 (2012)CrossRefGoogle Scholar
  5. 5.
    Jolly, M.P., Grady, L.: 3D general lesion segmentation in CT. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE (2008)Google Scholar
  6. 6.
    Kashyap, R.L., Chellappa, R.: Estimation and choice of neighbors in spatial-interaction models of images. IEEE Trans. Information Theory 1, 60–72 (1983)CrossRefGoogle Scholar
  7. 7.
    Liu, J., Hu, Q., Chen, Z., Heng, P.: Adaptive liver segmentation from multi-slice CT scans. In: Peng, Y., Weng, X., Magjarevic, R. (eds.) 7th Asian-Pacific Conference on Medical and Biological Engineering. IFMBE Proceedings, vol. 19, pp. 381–384. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Massoptier, L., Casciaro, S.: A new fully automatic and robust algorithm for fast segmentation of liver tissue and tumors from CT scans, vol. 18, pp. 1658–1665. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Militzer, A., Hager, T., Jäger, F., Tietjen, C., Hornegger, J.: Automatic detection and segmentation of focal liver lesions in contrast enhanced CT images. In: 20th International Conference on Pattern Recognition, pp. 2524–2527 (August 2010)Google Scholar
  10. 10.
    Park, S.-J., Seo, K.-S., Park, J.-A.: Automatic Hepatic Tumor Segmentation Using Statistical Optimal Threshold. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2005. LNCS, vol. 3514, pp. 934–940. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Pescia, D., Paragios, N., Chemouny, S.: Automatic detection of liver tumors. In: 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 672–675 (2008)Google Scholar
  12. 12.
    Pham, M., Susomboon, R., Disney, T., Raicu, D., Furst, J.: A comparison of texture models for automatic liver segmentation. In: Pluim, J.P.W., Reinhardt, J.M. (eds.) Proc. Medical Imaging 2007: Image Processing of SPIE, vol. 6512 (2007)Google Scholar
  13. 13.
    Ranguelova, E.B.: Segmentation of textured images on three-dimensional lattices. PhD Thesis, University of Dublin, Trinity College (2002)Google Scholar
  14. 14.
    Seo, K.S.: Automatic Hepatic Tumor Segmentation Using Composite Hypotheses. In: Kamel, M.S., Campilho, A.C. (eds.) ICIAR 2005. LNCS, vol. 3656, pp. 922–929. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Susomboon, R., Raicu, D., Furst, J., Johnson, T.B.: A co-occurrence texture semi-invariance to direction, distance and patient size. In: Reinhardt, J.M., Pluim, J.P.W. (eds.) Proc. Medical Imaging 2008: Image Processing, vol. 6914. SPIE (2008)Google Scholar
  16. 16.
    Upadhyay, S., Jain, S., Papadakis, M., Azencott, R.: 3D-rigid motion invariant discrimination and classification of 3D-textures. In: Papadakis, M., Van De Ville, D., Goyal, V. (eds.) Proc. Wavelets and Sparsity XIV, Proceedings SPIE, vol. 8138, p. 813821 (2011), http://dx.doi.org/10.1117/12.891721
  17. 17.
    Zhou, J., Xiong, W., Tian, Q., Qi, Y., Liu, J., Leow, W.K., Han, T., Venkatesh, S.K., Wang, S.C.: Semi-automatic segmentation of 3d liver tumors from CT scans using voxel classification and propagational learning. In: MIDAS (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Sanat Upadhyay
    • 1
  • Manos Papadakis
    • 1
  • Saurabh Jain
    • 2
  • Gregory Gladish M.D.
    • 3
  • Ioannis A. Kakadiaris
    • 4
  • Robert Azencott
    • 1
  1. 1.Department of MathematicsUniversity of HoustonUSA
  2. 2.Center for Imaging SciencesJohn Hopkins UniversityUSA
  3. 3.MD Anderson Cancer CenterThe University of TexasUSA
  4. 4.Department of Computer ScienceUniversity of HoustonUSA

Personalised recommendations