Advertisement

Piecewise Structural Diffusion Defined on Shape Index for Noise Reduction in Dual-Energy CT Images

  • Wenli Cai
  • June-Goo Lee
  • Da Zhang
  • Christina Piel
  • Hiroyuki Yoshida
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7601)

Abstract

The increasing radiation dose in dual-energy CT (DE-CT) scanning due to the double exposures at 80 kVp and 140 kVp is a major concern in the application of DE-CT. This paper presents a novel image-space denoising method, called piecewise structural diffusion (PSD), for the reduction of noise in low-dose DE-CT images. Three principle structures (plate, ridge, and cap) and their corresponding diffusion tensors are formulated based on the eigenvalues of a Hessian matrix. The local diffusion tensor that is piecewise-defined on the domain of shape index is composed by a linear combination of two diffusion tensors of the associated principle structures. A single diffusion tensor calculated from the fused DE-CT image is applied to both high- and low-energy images. In the DE-CT colon phantom study, we demonstrated that DE-CT images filtered by PSD yielded the similar image quality with half of radiation doses.

Keywords

Noise reduction dual-energy CT dual-energy CT colonography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alvarez, R.E., Macovski, A.: Energy-Selective Reconstructions in X-Ray Computerised Tomography. Phys. Med. Biol. 21, 733–744 (1976)CrossRefGoogle Scholar
  2. 2.
    Johnson, T., Fink, C., Schönberg, S.O., Reiser, M.F.: Dual Energy CT in Clinical Practice (2011)Google Scholar
  3. 3.
    Kalra, M.K., Maher, M.M., Toth, T.L., Hamberg, L.M., Blake, M.A., Shepard, J.A., Saini, S.: Strategies for CT Radiation Dose Optimization. Radiology 230, 619–628 (2004)CrossRefGoogle Scholar
  4. 4.
    Murazaki, H., Funama, Y., Sugaya, Y., Miyazaki, O., Tomiguchi, S., Awai, K.: Optimal Setting of Automatic Exposure Control Based on Image Noise and Contrast on Iodine-Enhanced CT. Acad. Radiol. (2012)Google Scholar
  5. 5.
    Silva, A.C., Lawder, H.J., Hara, A., Kujak, J., Pavlicek, W.: Innovations in CT Dose Re-duction Strategy: Application of the Adaptive Statistical Iterative Reconstruction Algorithm. AJR Am. J. Roentgenol. 194, 191–199 (2010)CrossRefGoogle Scholar
  6. 6.
    Koenderink, J.J.: Solid shape. MIT Press, Cambridge (1990)Google Scholar
  7. 7.
    Yoshida, H., Näppi, J.: Three-Dimensional Computer-Aided Diagnosis Scheme for Detection of Colonic Polyps. IEEE Trans. Med. Imaging 20, 1261–1274 (2001)CrossRefGoogle Scholar
  8. 8.
    Yoshida, H., Näppi, J., MacEneaney, P., Rubin, D.T., Dachman, A.H.: Computer-Aided Diagnosis Scheme for Detection of Polyps at CT Colonography. Radiographics 22, 963–979 (2002)Google Scholar
  9. 9.
    Yoshida, H., Masutani, Y., MacEneaney, P., Rubin, D.T., Dachman, A.H.: Computerized Detection of Colonic Polyps at CT Colonography on the Basis of Volumetric Features: Pilot Study. Radiology 222, 327–336 (2002)CrossRefGoogle Scholar
  10. 10.
    Alvarez, R.E., Stonestrom, J.P.: Optimal Processing of Computed Tomography Images using Experimentally Measured Noise Properties. J. Comput. Assist. Tomogr. 3, 77–84 (1979)CrossRefGoogle Scholar
  11. 11.
    Perona, P., Malik, J.: Scale-Space and Edge Detection using Anisotropic Diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)CrossRefGoogle Scholar
  12. 12.
    Weickert, J., Heidelberglaan, E.: A Review of Nonlinear Diffusion Filtering (1997)Google Scholar
  13. 13.
    Sato, Y., Westin, C., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., Kikinis, R.: Tissue Classifiction Based on 3D Local Intensity Structures for Volume Rendering. IEEE Trans. Visualization and Computer Graphics 6, 160–180 (2000)CrossRefGoogle Scholar
  14. 14.
    Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide, 2nd edn. Kitware Inc. (2005)Google Scholar
  15. 15.
    Cai, W., Lee, J.G., Zalis, M.E., Yoshida, H.: Mosaic Decomposition: An Electronic Cleansing Method for Inhomogeneously Tagged Regions in Noncathartic CT Colonography. IEEE Trans. Med. Imaging 30, 559–574 (2011)CrossRefGoogle Scholar
  16. 16.
    Cai, W., Yoshida, H., Zalis, M.E., Näppi, J.J., Harris, G.J.: Informatics in Radiology: Electronic Cleansing for Noncathartic CT Colonography: A Structure-Analysis Scheme. Radiographics 30, 585–602 (2010)CrossRefGoogle Scholar
  17. 17.
    Cai, W., Zalis, M.E., Näppi, J., Harris, G.J., Yoshida, H.: Structure-Analysis Method for Electronic Cleansing in Cathartic and Noncathartic CT Colonography. Med. Phys. 35, 3259–3277 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Wenli Cai
    • 1
  • June-Goo Lee
    • 1
    • 2
    • 3
  • Da Zhang
    • 1
  • Christina Piel
    • 1
    • 4
  • Hiroyuki Yoshida
    • 1
  1. 1.3D Imaging Research, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonUSA
  2. 2.Department of RadiologyUniversity of PittsburghUSA
  3. 3.FARP/Imaging ResearchPittsburghUSA
  4. 4.Institut für Medizinische Physik und StrahlenschutzUniversity of Applied Sciences in GiessenGiessenGermany

Personalised recommendations