Advertisement

Runtime Adaptation of Architectural Models: An Approach for Adapting User Interfaces

  • Diego Rodríguez-Gracia
  • Javier Criado
  • Luis Iribarne
  • Nicolás Padilla
  • Cristina Vicente-Chicote
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7602)

Abstract

Traditional techniques of model-driven development usually concern with the production of non-executable models. These models are usually manipulated at design-time by means of fixed model transformations. However, in some situations, models need to be transformed at runtime. Moreover, the transformations handling these models could be provided with a dynamic behavior enabling the adaptation to the current execution context and requirements. In this vein, this paper defines a transformation pattern designed for flexible model transformation that can be dynamically composed by selecting the appropriate transformation rules from a rule repository, which is also represented by a model. The rules in the repository are updated at each step of adaptation to improve later rule selection. We chose the domain of user interfaces, specified as component-based architectural models, as our case study.

Keywords

UI Adaptive Transformation Rule Selection MDE 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blair, G., Bencomo, N., France, R.B.: Models@RT. Computer 40(10), 22–27 (2009)CrossRefGoogle Scholar
  2. 2.
    Criado, J., Vicente-Chicote, C., Iribarne, L., Padilla, N.: A Model-Driven Approach to Graphical User Interface RT Adaptation. Models@RT, CEUR-WS 641 (2010)Google Scholar
  3. 3.
    Criado, J., Padilla, N., Iribarne, L., Asensio, J.-A.: User Interface Composition with COTS-UI and Trading Approaches: Application for Web-Based Environmental Information Systems. In: Lytras, M.D., Ordonez De Pablos, P., Ziderman, A., Roulstone, A., Maurer, H., Imber, J.B. (eds.) WSKS 2010. CCIS, vol. 111, pp. 259–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Iribarne, L., Padilla, N., Criado, J., Asensio, J., Ayala, R.: A Model Transformation Approach for Automatic Composition of COTS User Interfaces in Web-Based Information Systems. Information Systems Management 27(3), 207–216 (2010)CrossRefGoogle Scholar
  5. 5.
    Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: OOPSLA Workshop on Generative Tech. in the Context of the MDA, pp. 1–17 (2003)Google Scholar
  6. 6.
    Eclipse Java Emitter Templates (JET), http://bit.ly/SdxyWw
  7. 7.
    Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation tool. Science of Computer Programming 72(1-2), 31–39 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gronback, R.: Eclipse Modeling Project: A Domain-Specific Language (DSL) Toolkit. Addison-Wesley Professional (2009)Google Scholar
  9. 9.
    Hearnden, D., Lawley, M., Raymond, K.: Incremental Model Transformation for the Evolution of Model-Driven Systems. In: Wang, J., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Porres, I.: Rule-based update transformations and their application to model refactorings. Software and Systems Modeling 4(4), 368–385 (2005)CrossRefGoogle Scholar
  11. 11.
    Gray, J., Lin, Y., Zhang, J.: Automating change evolution in model-driven engineering. Computer 39(2), 51–58 (2006)CrossRefGoogle Scholar
  12. 12.
    Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjørven, E.: Using Architecture Models for Runtime Adaptability. IEEE Software 23(2), 62–70 (2006)CrossRefGoogle Scholar
  13. 13.
    Fleurey, F., Solberg, A.: A Domain Specific Modeling Language Supporting Specification, Simulation and Execution of Dynamic Adaptive Systems. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 606–621. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Serral, E., Valderas, P., Pelechano, V.: Supporting Runtime System Evolution to Adapt to User Behaviour. In: Pernici, B. (ed.) CAiSE 2010. LNCS, vol. 6051, pp. 378–392. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  15. 15.
    OSGi – The Dynamic Module System for Java, http://www.osgi.org/
  16. 16.
    Kurtev, I., van den Berg, K., Jouault, F.: Rule-based modularization in model transformation languages illustrated with ATL. Sci. Comp. Prog. 68(3), 138–154 (2007)zbMATHCrossRefGoogle Scholar
  17. 17.
    Wagelaar, D., Van Der Straeten, R., Deridder, D.: Module superimposition: a composition technique for rule-based model transformation languages. Software and Systems Modeling 9(3), 285–309 (2010)CrossRefGoogle Scholar
  18. 18.
    Wagelaar, D., Tisi, M., Cabot, J., Jouault, F.: Towards a general composition semantics for rule-based model transformation. In: MDE Languages and Systems, pp. 623–637. Springer (2011)Google Scholar
  19. 19.
    Tisi, M., Jouault, F., Fraternali, P., Ceri, S., Bézivin, J.: On the use of higher-order model transformations. In: MDA-Found. & Applic., pp. 18–33. Springer (2009)Google Scholar
  20. 20.
    Tisi, M., Cabot, J., Jouault, F.: Improving Higher-Order Transformations Support in ATL. In: Tratt, L., Gogolla, M. (eds.) ICMT 2010. LNCS, vol. 6142, pp. 215–229. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Diego Rodríguez-Gracia
    • 1
  • Javier Criado
    • 1
  • Luis Iribarne
    • 1
  • Nicolás Padilla
    • 1
  • Cristina Vicente-Chicote
    • 2
  1. 1.Applied Computing GroupUniversity of AlmeríaSpain
  2. 2.Dpt. of Info. Communication TechnologiesTech. University of CartagenaSpain

Personalised recommendations