Advertisement

Decision Tree Selection in an Industrial Machine Fault Diagnostics

  • Nour El Islem Karabadji
  • Hassina Seridi
  • Ilyes Khelf
  • Lakhdar Laouar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7602)

Abstract

Decision trees are widely used technique in data mining and classification fields. This method classifies objects following succession tests on their attributes. Its principal disadvantage is the choice of optimal model among the various existing trees types (Chaid, Cart,Id3..). Each tree has its specificities which make the choice justification difficult. In this work, decision tree choice validation is studied and the use of genetic algorithms is proposed. To pull out best tree, all models are generated and their performances measured on distinct training and validation sets. After that, various statistical tests are made. In this paper we propose the diagnosis accomplishment of an industrial ventilator(Fan) based an analysis-decision trees.

Keywords

Genetics algorithm Decision trees Evaluation Datamining 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Cha, S.-H., Tappert, C.: A Genetic Algorithm for Constructing CompactBinary Decision Trees. Journal of Pattern Recognition Research (2009)Google Scholar
  2. [2]
    Chen, J., Wang, X., Zhai, J.: Pruning Decision Tree Using Genetic Algorithms. In: International Conference on Artificial Intelligence and Computational Intelligence (2009)Google Scholar
  3. [3]
    Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)MathSciNetzbMATHGoogle Scholar
  4. [4]
    Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The WEKA Data Mining Software: An Update. SIGKDD Explorations, 11 (2009)Google Scholar
  5. [5]
    Breslow, L.A., Aha, D.W.: Simplifying decision trees: a survey. Knowledge Engineering Review 12(1), 1–40 (1997)CrossRefGoogle Scholar
  6. [6]
    Karabadji, N.E.I., Khelf, I., Seridi, H., Laouar, L.: Genetic Optimization of Decision Tree Choice for Fault Diagnosis in an Industrial Ventilator. In: Fakhfakh, T., Bartelmus, W., Chaari, F., Zimroz, R., Haddar, M. (eds.) Condition Monitoring of Machinery in Non-Stationary Operations, vol. 110 Part III, pp. 277–283. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  7. [7]
    Worden, K., Manson, G., Hilson, G., Pierce, S.: Genetic optimisation of a neural damage locator. Journal of Sound and Vibration 309, 529–544 (2008)CrossRefGoogle Scholar
  8. [8]
    Stein, G., Chen, B., Wu, A.S., Hua, K.A.: Decision tree classifier for network intrusion detection with GA-based feature selection. In: Proceedings ACM Southeast Regional Conference, Kennesaw, Georgia, USA (2005)Google Scholar
  9. [9]
    Zhao, Q., Shirasaka, M.: A Study on Evolutionary Design of Binary Decision Trees. In: Proceedings of the Congress on Evolutionary Computation, vol. 3, pp. 1988–1993. IEEE (1999)Google Scholar
  10. [10]
    Bennett, K., Blue, J.: Optimal decision trees. Tech. Rpt. No. 214 Department of Mathematical Sciences, Rensselaer Polytechnic Institute, Troy, New York (1996)Google Scholar
  11. [11]
    Kim, K.M., Park, J.J., Song, M.H., Kim, I.-C., Suen, C.Y.: Binary Decision Tree Using Genetic Algorithm for Recognizing Defect Patterns of Cold Mill Strip. In: Tawfik, A.Y., Goodwin, S.D. (eds.) Canadian AI 2004. LNCS (LNAI), vol. 3060, pp. 461–466. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. [12]
    Gehrke, J., Ganti, V., Rama krishnan R., Loh, W.: BOAT- Optimistic Decision Tree Construction. In: Proc. of the ACM SIGMOD Conference on Management of Data, pp. 169–180 (1999)Google Scholar
  13. [13]
    Khalafallah, A.: Constructing Near Optimal Binary Decision Tree Classifier Using Genetic Algorithm. International Journal of Computer Science and Engineering Technology 1(11), 722–724 (2011)Google Scholar
  14. [14]
    Goldberg, D.L.: Genetic Algorithms in Search Optimization, and Machine Learning. Addison- Wesley (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Nour El Islem Karabadji
    • 1
  • Hassina Seridi
    • 1
  • Ilyes Khelf
    • 2
  • Lakhdar Laouar
    • 2
  1. 1.Electronic Document Management Laboratory (LabGED)Badji Mokhtar-Annaba UniversityAnnabaAlgeria
  2. 2.Laboratoire de Mécanique IndustrielleBadji Mokhtar-Annaba UniversityAlgeria

Personalised recommendations