Skip to main content

Dielectric Breakdown of Microelectronic and Nanoelectronic Devices

  • Chapter
Mechanics of Advanced Functional Materials

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1878 Accesses

Abstract

As great progress has been achieved in micro-fabrication and micro-processing technologies, the size of electronic devices has been scaled down to submicrometers. This is especially embodied in the Si metal-oxide-semiconductor (MOS)-based devices, e.g., chips and memories, obeying the well known Moore’s law, with the number of transistors on an integrated circuit doubling approximately every two years. To minimize the short-channel effect, the thickness of dielectric oxide in a MOS device is approaching a few nanometers (Stathis and DiMaria, 1999; Frank et al., 2001). In recent years, some basic functional components of many microelectronic devices, such as dielectric oxides in a MOS device, have been scaled down to the nanoscale in one or more dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnello, S., Boscaino, R., Buscarino, G., Cannas, M., Gelardi, F.M.: Structural relaxation of Eψ centers in amorphous silica. Phys. Rev. B 66, 113201 (2002)

    Article  ADS  Google Scholar 

  2. Alam, M., Weir, B., Bude, J., Silverman, P., Ghetti, A.: A computational model for oxide breakdown: theory and experiments. Microelectron. Eng. 59, 137–147 (2001)

    Article  Google Scholar 

  3. Alam, M.A., Bude, J., Ghetti, A.: Field acceleration for oxide breakdown— can an accurate anode hole injection model resolve the E vs. 1/E controversy? Reliability Physics Symposium, 2000, Proceedings 38th Annual 2000 IEEE International, pp. 21–26

    Google Scholar 

  4. Alam, M.A., Bude, J., Weir, B., Silverman, P., Ghetti, A., Monroe, D., Cheung, K.P., Moccio, S.: An anode hole injection percolation model for oxide breakdown-the “Doomsday” scenario revisited. Electron Devices Meeting, 1999. IEDM Technical Digest, International, pp. 715–718

    Google Scholar 

  5. Alam, M.A., Weir, B.E. Silverman, P.J.: A study of soft and hard breakdown-Part I: Analysis of statistical percolation conductance. IEEE Transa. Electron Dev. 49, 232–238 (2002)

    Article  ADS  Google Scholar 

  6. Ando, T.: Density-functional calculation of sub-band structure in accumulation and inversion layers. Phys. Rev. B 13, 3468–3477 (1976)

    Article  ADS  Google Scholar 

  7. Ando, T., Fowler, A.B., Stern, F.: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982)

    Article  ADS  Google Scholar 

  8. Ando, Y., Itoh, T.: Calculation of transmission tunneling current across arbitrary potential barriers. J. Appl. Phys. 61, 1497–1502 (1987)

    Article  ADS  Google Scholar 

  9. Azizi, N., Yiannacouras, P.: Gate Oxide Breakdown. Lecture Notes, Reliability of Intergrated Circuits (2003)

    Google Scholar 

  10. Baldereschi, A., Baroni, S., Resta, R.: Band offsets in lattice-matched heterojunctions: A model and first-principles calculations for GaAs/AlAs. Phys. Rev. Lett. 61, 734–737 (1988)

    Article  ADS  Google Scholar 

  11. Baraff, G.A., Appelbaum, J.A.: Effect of electric and magnetic fields on the self-consistent potential at the surface of a degenerate semiconductor. Phys. Rev. B 5, 475–497 (1972)

    Article  ADS  Google Scholar 

  12. Bardeen, J.: Tunnelling from a many-particle point of view. Phys. Rev. Lett. 6, 57–59 (1961)

    Article  ADS  Google Scholar 

  13. Blchl, P.E.: First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen. Phys. Rev. B 62, 6158–6179 (2000)

    Article  ADS  Google Scholar 

  14. Blchl, P.E., Stathis, J.H.: Aspects of defects in silica related to dielectric breakdown of gate oxides in MOSFETs. Phys. B Condens. Matter. 273, 1022–1026 (1999)

    Article  ADS  Google Scholar 

  15. Blchl, P.E., Stathis, J.H.: Hydrogen electrochemistry and stress-induced leakage current in silica. Phys. Rev. Lett. 83, 372–375 (1999)

    Article  ADS  Google Scholar 

  16. Boyko, K.C., Gerlach, D.L.: Time Dependent Dielectric Breakdown at 210 Å oxides. Proceedings of the IEEE Reliability Physics Symposium, 1989, pp. 1–8

    Google Scholar 

  17. Buchanan, D.A., DiMaria, D.J.: Interface and bulk trap generation in metaloxide-semiconductor capacitors. J. Appl. Phys. 67, 7439–7452 (1990)

    Article  ADS  Google Scholar 

  18. Buchanan, D.A., Marwick, A.D., DiMaria, D.J., Dori, L.: The Physics and Chemistry of SiO2 and the Si-SiO2 Interface. Plenum, New York (1993)

    Google Scholar 

  19. Buchanan, D.A., Stathis, J.H., Cartier, E., DiMaria, D.J.: On the relationship between stress induced leakage currents and catastrophic breakdown in ultrathin SiO2 based dielectrics. Microelectron. Eng. 36, 329–332 (1997)

    Article  Google Scholar 

  20. Cartier, E., Buchanan, D.A., Stathis, J.H., Maria, D.J.: Atomic hydrogeninduced degradation of thin SiO2 gate oxides. J. Non-cryst. Solids 187, 244–247 (1995)

    Article  ADS  Google Scholar 

  21. Chang, C., Hu, C., Brodersen, R.W.: Quantum yield of electron impact ionization in silicon. J. Appl. Phys. 57, 302–309 (1985)

    Article  ADS  Google Scholar 

  22. Chaparala, P., Suehle, J.S., Messick, C., Roush, M.: Electric field dependent dielectric breakdown of intrinsic SiO2 films under dynamic stress. Reliability Physics Symposium, 1996. 34th Annual Proceedings, IEEE International.

    Google Scholar 

  23. Chen, I.C., Holland, S., Young, K.K., Chang, C., Hu, C.: Substrate hole current and oxide breakdown. Appl. Phys. Lett. 49, 669–671 (1986)

    Article  ADS  Google Scholar 

  24. Chen, I.C., Holland, S.E., Hu, C.: Electrical breakdown in thin gate and tunneling oxides. IEEE. T. Electron Dev. 32, 413–422 (1985)

    Article  ADS  Google Scholar 

  25. Cheung, K.P.: A physics-based, unified gate-oxide breakdown model. Electron Devices Meeting, 1999. IEDM Technical Digest International, pp. 719–722

    Google Scholar 

  26. Cheung, K.P.: Unifying the thermal-chemical and anode-hole-injection gateoxide breakdown models. Microelectron. Reliab. 41, 193–199 (2001)

    Article  Google Scholar 

  27. Chiabrera, A., Zitti, E.D., Costa, F., Bisio, G.M.: Physical limits of integration and information processing in molecular systems. J. Phys. Appl. Phys. 22, 1571–1579 (1989)

    Article  ADS  Google Scholar 

  28. Choi, Y.S., Park, H., Nishida, T., Thompson, S.E.: Reliability of HfSiON gate dielectric silicon MOS devices under [110]_mechanical stress: Time dependent dielectric breakdown. J. Appl. Phys. 105, 044503 (2009)

    Article  ADS  Google Scholar 

  29. Degraeve, R., Groeseneken, G., Bellens, R., Depas, M., Maes, H.E. A consistent model for the thickness dependence of intrinsic breakdown in ultra-thin oxides. IEEE (1995).

    Google Scholar 

  30. Degraeve, R., Groeseneken, G., Bellens, R., Ogier, J.L., Depas, M., Roussel, P.J., Maes, H.E.: New insights in the relation between electron trap generation and the statistical properties of oxide breakdown. IEEE. T. Electron Dev. 45, 904–911 (1998)

    Article  ADS  Google Scholar 

  31. Degraeve, R., Kaczer, B., Groeseneken, G.: Reliability: a possible showstopper for oxide thickness scaling? Semicond. Sci. Tech. 15, 436–444 (2000)

    Article  ADS  Google Scholar 

  32. DiMaria, D.J.: Insulating Films on Semiconductors. Adam Hilger, Bristol (1991)

    Google Scholar 

  33. DiMaria, D.J.: Stress induced leakage currents in thin oxides. Microelectron. Eng. 28, 63–66 (1995)

    Article  Google Scholar 

  34. DiMaria, D.J., Arnold, D., Cartier, E.: Degradation and breakdown of silicon dioxide films on silicon. Appl. Phys. Lett. 61, 2329–2331 (1992)

    Article  ADS  Google Scholar 

  35. DiMaria, D.J., Cartier, E.: Mechanism for stress-induced leakage currents in thin silicon dioxide films. J. Appl. Phys. 78, 3883–3894 (1995)

    Article  ADS  Google Scholar 

  36. DiMaria, D.J., Cartier, E., Arnold, D.: Impact ionization, trap creation, degradation and breakdown in silicon dioxide films on silicon. J. Appl. Phys. 73, 3367–3384 (1993)

    Article  ADS  Google Scholar 

  37. DiMaria, D.J., Stasiak, J.W.: Trap creation in silicon dioxide produced by hot electrons. J. Appl. Phys. 65, 2342–2356 (1989)

    Article  ADS  Google Scholar 

  38. DiMaria, D.J., Stathis, J.H.: Trapping and trap creation studies on nitrided and reoxidized-nitrided silicon dioxide films on silicon. J. Appl. Phys. 70, 1500–1509 (1991)

    Article  ADS  Google Scholar 

  39. DiMaria, D.J., Stathis, J.H.: Anode hole injection, defect generation, and breakdown in ultrathin silicon dioxide films. J. Appl. Phys. 89, 5015–5024 (2001)

    Article  ADS  Google Scholar 

  40. DiStefano, T.H., Shatzkes, M.: Impact ionization model for dielectric instability and breakdown. Appl. Phys. Lett. 25, 685–687 (1974)

    Article  ADS  Google Scholar 

  41. DiStefano, T.H., Shatzkes, M.: Dielectric instability and breakdown in wide bandgap insulators. J. Vac. Sci. Technol. 12, 37–46 (1975)

    Article  ADS  Google Scholar 

  42. DiStefano, T.H., Shatzkes, M.: Dielectric instability and breakdown in SiO2 thin films. J. Vac. Sci. Technol. 13, 50–54 (1976)

    Article  ADS  Google Scholar 

  43. Dumin, D.J.: Oxide wearout, breakdown, and reliability. Int. J. High Speed Electron. Syst. 11, 617–718 (2001)

    Google Scholar 

  44. Dumin, D.J., Mopuri, S.K., Vanchinathan, S., Scott, R.S., Subramoniam, R., Lewis, T.G.: High field related thin oxide wearout and breakdown. IEEE. T. Electron Dev. 42, 760–772 (1995)

    Article  ADS  Google Scholar 

  45. Fang, F.F., Howard, W.E.: Negative field-effect mobility on (100) Si surfaces. Phys. Rev. Lett. 16, 797–799 (1966)

    Article  ADS  Google Scholar 

  46. Feigl, F.J., Gale, R., Chew, H., Magee, C.W., Young, D.R.: Current-induced hydrogen migration and interface trap generation in aluminum-silicon dioxide-silicon capacitors. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 1, 348–354 (1984)

    Article  Google Scholar 

  47. Fischetti, M.V.: Model for the generation of positive charge at the Si-SiO2 interface based on hot-hole injection from the anode. Phys. Rev. B 31, 2099–2113 (1985)

    Article  ADS  Google Scholar 

  48. Fischetti, M.V., Weinberg, Z.: Effect of gate metal and SiO2 thickness on the generation of donor states at the Si-SiO2 interface. J. Appl. Phys. 57, 418–425 (1985)

    Article  ADS  Google Scholar 

  49. Foster, A.S., Sulimov, V.B., Lopez Gejo, F., Shluger, A.L., Nieminen, R.M.: Structure and electrical levels of point defects in monoclinic zirconia. Phys. Rev. B 64, 224108 (2001)

    Article  ADS  Google Scholar 

  50. Fowler, A.B., Fang, F.F., Howard, W.E., Stiles, P.J.: Magneto-oscillatory conductance in silicon surfaces. Phys. Rev. Lett. 16, 901 (1966)

    Article  ADS  Google Scholar 

  51. Fowler, R.H., Nordheim, L.W.: Electron emission in intense electric fields. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 119, 173–181 (1928)

    MATH  Google Scholar 

  52. Frank, D.J., Dennard, R.H., Nowak, E., Solomon, P.M., Taur, Y., Wong, H.S.P.: Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001)

    Article  Google Scholar 

  53. Gale, R., Feigl, F.J., Magee, C.W., Young, D.R.: Hydrogen migration under avalanche injection of electrons in Si metal-oxide-semiconductor capacitors. J. Appl. Phys. 54, 6938–6942 (1983)

    Article  ADS  Google Scholar 

  54. García, A., Northrup, J.E.: Compensation of p-Type doping in ZnSe: The role of impurity-native defect complexes. Phys. Rev. Lett. 74, 1131–1134 (1995)

    Article  ADS  Google Scholar 

  55. Ghetti, A.: 6 gate oxide reliability: physical and computational models. Predictive simulation of semiconductor processing: status and challenges 201 (2004)

    Google Scholar 

  56. Ghetti, A., Bude, J., Silverman, P., Hamad, A., Vaidya, H.: Modeling and simulation of tunneling current in MOS devices including quantum mechanical effects. Ieice. T. Electron. 1175–1182 (2000)

    Google Scholar 

  57. Ghetti, A., Liu, C.T., Mastrapasqua, M., Sangiorgi, E.: Characterization of tunneling current in ultra-thin gate oxide. Solid State Electron 44, 1523–1531 (2000)

    Article  ADS  Google Scholar 

  58. Green, M.L., Gusev, E.P., Degraeve, R., Garfunkel, E.L.: Ultrathin ([lessthan] 4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: Understanding the processing, structure, and physical and electrical limits. J. Appl. Phys. 90, 2057–2121 (2001)

    Article  ADS  Google Scholar 

  59. Gusev, E.P., Buchanan, D.A., Cartier, E., Kumar, A., DiMaria, D., Guha, S., Callegari, A., Zafar, S., Jamison, P.C., Neumayer, D.A.: Ultrathin high-K gate stacks for advanced CMOS devices. Electron Devices Meeting, 2001, IEDM Technical Digest, International, pp.20.1.1–20.1.4

    Google Scholar 

  60. Harari, E.: Dielectric breakdown in electrically stressed thin films of thermal SiO2. J. Appl. Phys. 49, 2478–2489 (1978)

    Article  ADS  Google Scholar 

  61. Harrison, W.A.: Tunneling from an independent-particle point of view. Phys. Rev. 123, 85–89 (1961)

    Article  ADS  Google Scholar 

  62. Heh, D., Vogel, E.M., Bernstein, J.B.: Impact of substrate hot hole injection on ultrathin silicon dioxide breakdown. Appl. Phys. Lett. 82, 3242–3244 (2003)

    Article  ADS  Google Scholar 

  63. Hikita, M., Tajima, S., Kanno, I., Ishino, I., Sawa, G., Ieda, M.: High-field conduction and electrical breakdown of polyethylene at high temperatures. Jpn. J. Appl. Phys. 24, 988–996 (1985)

    Article  ADS  Google Scholar 

  64. Hu, C., Lu, Q.: A Unified Gate Oxide Reliability Model. Reliability Physics Symposium Proceedings, 1999. 37th Annual. 1999 IEEE International, pp. 47–51

    Google Scholar 

  65. Huang, N.Y., She, J.C., Chen, J., Deng, S.Z., Xu, N.S., Bishop, H., Huq, S.E., Wang, L., Zhong, D.Y., Wang, E.G., Chen, D.M.: Mechanism responsible for initiating carbon nanotube vacuum breakdown. Phys. Rev. Lett. 93, 075501 (2004)

    Google Scholar 

  66. Imai, H., Arai, K., Imagawa, H., Hosono, H., Abe, Y.: Two types of oxygendeficient centers in synthetic silica glass. Phys. Rev. B 38, 12772–12775 (1988)

    Article  ADS  Google Scholar 

  67. Jeffery, S., Sofield, C.J., Pethica, J.B.: The influence of mechanical stress on the dielectric breakdown field strength of thin SiO2 films. Appl. Phys. Lett. 73, 172–174 (1998)

    Article  ADS  Google Scholar 

  68. Jeong, D.S., Schroeder, H., Breuer, U., Waser, R.: Characteristic electroforming behavior in Pt/TiO2/Pt resistive switching cells depending on atmosphere. J. Appl. Phys. 104, 123716–123718 (2008)

    Article  ADS  Google Scholar 

  69. Kadoshima, M., Hiratani, M., Shimamoto, Y., Torii, K., Miki, H., Kimura, S. Nabatame, T.: Rutile-type TiO2 thin film for high-k gate insulator. Thin Solid Films 424, 224–228 (2003)

    Article  ADS  Google Scholar 

  70. Kane, E.O.: Theory of tunneling. J. Appl. Phys. 32, 83–91 (1961)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  71. Kimura, M.: Oxide breakdown mechanism and quantum physical chemistry for time-dependent dielectric breakdown. Reliability Physics Symposium, 1997. 35th Annual Proceedings, IEEE International, p. 190

    Google Scholar 

  72. Klein, N.: A theory of localized electronic breakdown in insulating films. Adv. Phys. 21, 605–645 (1972)

    Article  ADS  Google Scholar 

  73. Klein, N.: Electrical breakdown of insulators by one-carrier impact ionization. J. Appl. Phys. 53, 5828–5839 (1982)

    Article  ADS  Google Scholar 

  74. Klein, N., Solomon, P.: Current runaway in insulators affected by impact ionization and recombination. J. Appl. Phys. 47, 4364–4372 (1976)

    Article  ADS  Google Scholar 

  75. Laks, D.B., van de Walle, C.G., Neumark, G.F., Blöchl, P.E., Pantelides, S.T.: Native defects and self-compensation in ZnSe. Phys. Rev. B 45, 10965–10978 (1992)

    Article  ADS  Google Scholar 

  76. Lee, J.C., Chen, I.C., Hu, C.: Modeling and characterization of gate oxide reliability. IEEE. T. Electron Dev. 35, 2268–2278 (1988)

    Article  ADS  Google Scholar 

  77. Lenzlinger, M., Snow, E.H.: Fowler-Nordheim tunneling into thermally grown SiO2. J. Appl. Phys. 40, 278–283 (1969)

    Article  ADS  Google Scholar 

  78. Li, X., Tung, C.H., Pey, K.L.: The nature of dielectric breakdown. Appl. Phys. Lett. 93, 072903 (2008)

    Google Scholar 

  79. Lombardo, S., Stathis, J.H., Linder, B.P., Pey, K.L., Palumbo, F., Tung, C.H.: Dielectric breakdown mechanisms in gate oxides. J. Appl. Phys. 98, 121301–121336 (2005)

    Article  ADS  Google Scholar 

  80. Lui, W.W., Fukuma, M.: Exact solution of the Schrodinger equation across an arbitrary one-dimensional piecewise-linear potential barrier. J. Appl. Phys. 60, 1555–1559 (1986)

    Article  ADS  Google Scholar 

  81. Luo, X., Lin, S.P., Wang, B., Zheng, Y.: Impact of applied strain on the electron transport through ferroelectric tunnel junctions. Appl. Phys. Lett. 97, 012905 (2010)

    Google Scholar 

  82. Luo, X., Wang, B., Zheng, Y.: First-principles study on energetics of intrinsic point defects in LaAlO3. Phys. Rev. B 80, 104115 (2009)

    Google Scholar 

  83. Luo, X., Wang, B., Zheng, Y.: Microscopic mechanism of leakage currents in silica junctions. J. Appl. Phys. 106, 073711 (2009)

    Google Scholar 

  84. Maserjian, J., Zamani, N.: Behavior of the Si/SiO2 interface observed by Fowler-Nordheim tunneling. J. Appl. Phys. 53, 559–567 (1982)

    Article  ADS  Google Scholar 

  85. Mattila, T., Zunger, A.: Deep electronic gap levels induced by isovalent P and As impurities in GaN. Phys. Rev. B 58, 1367–1373 (1998)

    Article  ADS  Google Scholar 

  86. McPherson, J.W.: Stress dependent activation energy. Reliability Physics Symposium, 1986. 24th Annual, p. 12

    Google Scholar 

  87. McPherson, J.W., Baglee, D.A.: Acceleration factors for thin gate oxide stressing. Reliability Physics Symposium, 1985. 23rd Annual, p. 1

    Google Scholar 

  88. McPherson, J.W., Baglee, D.A.: Acceleration factors for thin oxide breakdown. J. Electrochem. Soc. 132, 1903–1908 (1985)

    Article  Google Scholar 

  89. McPherson, J.W., Khamankar, R.B., Shanware, A.: Complementary model for intrinsic time-dependent dielectric breakdown in SiO2 dielectrics. J. Appl. Phys. 88, 5351–5359 (2000)

    Article  ADS  Google Scholar 

  90. McPherson, J.W., Mogul, H.C.: Impact of mixing of disturbed bonding states on time-dependent dielectric breakdown in SiO2 thin films. Appl. Phys. Lett. 71, 3721–3723 (1997)

    Article  ADS  Google Scholar 

  91. McPherson, J.W., Mogul, H.C.: Underlying physics of the thermochemical E model in describing low-field time-dependent dielectric breakdown in SiO2 thin films. J. Appl. Phys. 84, 1513–1523 (1998)

    Article  ADS  Google Scholar 

  92. McPherson, J.W., Reddy, V.K., Mogul, H.C.: Field-enhanced Si−Si bondbreakage mechanism for time-dependent dielectric breakdown in thin-film SiO2 dielectrics. Appl. Phys. Lett. 71, 1101–1103 (1997)

    Article  ADS  Google Scholar 

  93. Merzbacher, E.: Quantum Mechanics, 2nd ed. John Wiley & Sons, Inc., New York (1970)

    Google Scholar 

  94. Meyer, W.K., Crook, D.L.: Model for oxide wearout due to charge trapping. Reliability Physics Symposium, 1983. 21st Annual, pp. 242–247

    Google Scholar 

  95. Moglestue, C.: Self-consistent calculation of electron and hole inversion charges at silicon—silicon dioxide interfaces. J. Appl. Phys. 59, 3175–3183 (1986)

    Article  ADS  Google Scholar 

  96. O’Dwyer, J.J.: Theory of high field conduction in a dielectric. J. Appl. Phys. 40, 3887–3890 (1969)

    Article  ADS  Google Scholar 

  97. O’Dwyer, J.J.: The theory of electrical conduction and breakdown in solid dielectrics. Clarendon Press, Oxford (1973)

    Google Scholar 

  98. Okada, K., Ota, H., Nabatame, T., Toriumi, A.: Dielectric breakdown in high-K gate dielectrics-Mechanism and lifetime assessment. Reliability Physics Symposium, 2007. Proceedings 45th Annual IEEE International, pp. 36–43

    Google Scholar 

  99. Okada, K., Yoneda, K.: A consistent model for time dependent dielectric breakdown in ultrathin silicon dioxides. Electron Devices Meeting, 1999. IEDM Technical Digest. International, pp. 445–448

    Google Scholar 

  100. Pöykkö, S., Puska, M.J., Nieminen, R.M.: Ab initio study of fully relaxed divacancies in GaAs. Phys. Rev. B 53, 3813–3819 (1996)

    Article  ADS  Google Scholar 

  101. Pals, J.A.: Quantization effects in semiconductor inversion and accumulation layers. Philips Research Reports Supplements 1972 (1972)

    Google Scholar 

  102. Park, D.G., Cho, H.J., Lim, C., Yeo, I.S., Roh, J.S., Kim, C.T., Hwang, J.M.: Characteristics of Al2O3 gate dielectric prepared by atomic layer deposition for giga scale CMOS DRAM devices. VLSI Technology, 2000. Digest of Technical Papers. 2000 Symposium on, pp. 46–47

    Google Scholar 

  103. Peng, J.Z., Fong, D.: High Density Semiconductor Memory Cell and Memory Array Using a Single Transistor. United States, Kilopass Technologies, Inc., Sunnyvale, CA (US), 6777757 B2 (2004)

    Google Scholar 

  104. Peressi, M., Binggeli, N., Baldereschi, A.: Band engineering at interfaces: theory and numerical experiments. J. Phys. D Appl. Phys. 31, 1273–1299 (1998)

    Article  ADS  Google Scholar 

  105. Pey, K.L., Tung, C.H., Radhakrishnan, M.K., Tang, L.J., Lin, W.H.: Dielectric breakdown induced epitaxy in ultrathin gate oxide—a reliability concern. Electron Devices Meeting, 2002. IEDM’ 02. Digest. International, pp.163–166

    Google Scholar 

  106. Prange, R.E.: Tunneling from a many-particle point of view. Phys. Rev. 131, 1083–1086 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  107. Radhakrishnan, M.K., Pey, K.L., Tung, C.H., Lin, W.H., Ong, S.H.: Physical analysis of reliability degradation in sub-micron devices. Electron Devices Meeting, 2001. IEDM Technical Digest. International, pp. 39.1.1–39.4.4

    Google Scholar 

  108. Rana, F., Tiwari, S., Buchanan, D.A.: Self-consistent modeling of accumulation layers and tunneling currents through very thin oxides. Appl. Phys. Lett. 69, 1104–1106 (1996)

    Article  ADS  Google Scholar 

  109. Register, L.F., Rosenbaum, E., Yang, K.: Analytic model for direct tunneling current in polycrystalline silicon-gate metal—oxide—semiconductor devices. Appl. Phys. Lett. 74, 457–459 (1999)

    Article  ADS  Google Scholar 

  110. Schindler, C., Weides, M., Kozicki, M.N., Waser, R.: Low current resistive switching in Cu−SiO2 cells. Appl. Phys. Lett. 92, 122910–122913 (2008)

    Article  ADS  Google Scholar 

  111. Schrieffer, J.R.: Semiconductor Surface Physics. University of Penn. Press, Philadelphia, PA (1957)

    Google Scholar 

  112. Shatzkes, M., Av-Ron, M.: Impact ionization and positive charge in thin SiO2 films. J. Appl. Phys. 47, 3192–3202 (1976)

    Article  ADS  Google Scholar 

  113. Solomon, P.: Breakdown in silicon oxide—a review. J. Vac. Sci. Techllol. 14, 1122–1130 (1977)

    Article  ADS  Google Scholar 

  114. Stathis, J.H.: Percolation models for gate oxide breakdown. J. Appl. Phys. 86, 5757–5766 (1999)

    Article  ADS  Google Scholar 

  115. Stathis, J.H.: Reliability limits for the gate insulator in CMOS technology. IBM J. Res. Dev. 46, 265–286 (2002)

    Article  Google Scholar 

  116. Stathis, J.H., DiMaria, D.J.: Reliability projection for ultra-thin oxides at low voltage. Electron Devices Meeting, 1998. IEDM’ 98 Technical Digest, International, pp. 167–170

    Google Scholar 

  117. Stathis, J.H., DiMaria, D.J.: Oxide scaling limit for future logic and memory technology. Microelectron. Eng. 48, 395–401 (1999)

    Article  Google Scholar 

  118. Stern, F.: Self-consistent results for n-type Si inversion layers. Phys. Rev. B 5, 4891–4899 (1972)

    Article  ADS  Google Scholar 

  119. Stern, F., Howard, W.E.: Properties of semiconductor surface inversion layers in the electric quantum limit. Phys. Rev. 163, 816–835 (1967)

    Article  ADS  Google Scholar 

  120. Suné, J., Placencia, I., Barniol, N., Farres, E., Martin, F., Aymerich, X.: On the breakdown statistics of very thin SiO2 films. Thin Solid Films 185, 347–362 (1990)

    Article  ADS  Google Scholar 

  121. Suñé, J., Wu, E.: Modeling the breakdown and breakdown statistics of ultra-thin SiO2 gate oxides. Microelectron. Eng. 59, 149–153 (2001)

    Article  Google Scholar 

  122. Suñé, J., Miranda, E.: Post soft breakdown conduction in SiO2 gate oxides. Int, Electron. Devices Meeting (IEDM) 2000 Tech. Dig., pp. 553–556

    Google Scholar 

  123. Suñé, J., Mura, G., Miranda, E.: Are soft breakdown and hard breakdown of ultrathin gate oxides actually different failure mechanisms? IEEE. Electr. Dev. Lett. 21, 167–169 (2000)

    Article  ADS  Google Scholar 

  124. Suñé, J., Olivo, P., Ricco, B.: Self-consistent solution of the Poisson and Schrödinger equations in accumulated semiconductor-insulator interfaces. J. Appl. Phys. 70, 337–345 (1991)

    Article  ADS  Google Scholar 

  125. Suñé, J., Wu, E.Y.: Hydrogen-release mechanisms in the breakdown of thin SiO2 films. Phys. Rev. Lett. 92, 087601 (2004)

    Google Scholar 

  126. Suehle, J.S., Chaparala, P., Messick, C., Miller, W.M., Boyko, K.C.: Field and temperature acceleration of time-dependent dielectric breakdown in intrinsic thin SiO2. Reliability Physics Symposium, 1994. 32nd Annual Proceedings., IEEE International pp. 120–125

    Google Scholar 

  127. Takagi, S., Yasuda, N., Toriumi, A.: A new I-V model for stress-induced leakage current including inelastic tunneling. IEEE Trans. Electron Dev. 46, 348–354 (1999)

    Article  ADS  Google Scholar 

  128. Tanaka, T., Matsunaga, K., Ikuhara, Y., Yamamoto, T.: First-principles study on structures and energetics of intrinsic vacancies in SrTiO3. Phys. Rev. B 68, 205213 (2003)

    Google Scholar 

  129. Tang, L.J., Pey, K.L., Tung, C.H., Radhakrishnan, M.K., Lin, W.H.: Gate dielectric-breakdown-induced microstructural damage in MOSFETs. IEEE Trans. Dev. Mater. Reliab. 4, 38–45 (2004)

    Article  Google Scholar 

  130. Timp, G., Bude, J., Bourdelle, K. K., Garno, J., Ghetti, A., Gossmann, H., Green, M.L., Forsyth, G., Kim, Y., Kleiman, R., Klemens, F., Kornblit, A., Loch stampfor, C., Mansfield, W., Moccio, S., Sorsch, T., Tennant, D. M., Timp, W., and Tung, R.: The Ballistic Nano-transistor. Electron Devices Meeting, 1999. IEDM Technical Digest. International pp. 55–58

    Google Scholar 

  131. Tung, C.H., Pey, K.L., Lin, W.H., Radhakrishnan, M.K.: Polarity-dependent dielectric breakdown-induced epitaxy (DBIE) in Si MOSFETs. IEEE Electron Dev. Lett. 23, 526–528 (2002)

    Article  ADS  Google Scholar 

  132. Umezawa, N., Shiraishi, K., Ohno, T., Watanabe, H., Chikyow, T., Torii, K., Yamabe, K., Yamada, K., Kitajima, H., Arikado, T.: First-principles studies of the intrinsic effect of nitrogen atoms on reduction in gate leakage current through Hf-based high-k dielectrics. Appl. Phys. Lett. 86, 143507–143503 (2005)

    Article  ADS  Google Scholar 

  133. Vermeer, J.: On the relation between ionic conductivity and breakdown strength of glass. Physica 22, 1269–1278 (1956)

    Article  ADS  Google Scholar 

  134. von Hippel, A.: Electric Breakdown of Solid and Liquid Insulators. J. Appl. Phys. 8, 815–832 (1937)

    Article  ADS  Google Scholar 

  135. Wagner, K.W.: The physical nature of the electrical breakdown of solid dielectrics. Trans. Am. Insti. Electr. Eng. 41, 288–299 (1922)

    Article  Google Scholar 

  136. Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  137. Weibull, W.A.: A statistical distribution function of wide acceptability. J. Appl. Mech. 18, 293–297 (1951)

    MATH  Google Scholar 

  138. Weinberg, Z.A.:On tunneling in metal-oxide-silicon structures. J. Appl. Phys. 53, 5052–5056 (1982)

    Article  ADS  Google Scholar 

  139. Whitehead, S.: Dielectric Breakdown of Solids. Clarendon Press, Oxford (1953)

    Google Scholar 

  140. Wintle, H.J.: Electrothermal breakdown: Analytic solutions for currents and fields. J. Appl. Phys. 52, 4181–4185 (1981)

    Article  ADS  Google Scholar 

  141. Wu, E., Vayshenker, A., Nowak, E., Sué, J., Vollertsen, R.P., Lai, W., Harmon, D.: Experimental evidence of TBD power-law for voltage acceleration factors for ultra-thin gate oxide. IEEE Trans. Electron Dev. 49, 2244–2253 (2002)

    Article  ADS  Google Scholar 

  142. Wu, E.Y., Abadeer, W.W., Han, L.K., Lo, S.H., Hueckel, G.R.: Challenges for Accurate Reliability Projections in the Ultra-Thin Oxide Regime, IEEE (1999)

    Google Scholar 

  143. Yang, T.C., Saraswat, K.C.: Effect of physical stress on the degradation of thin SiO2 films under electrical stress. IEEE Trans. Electron Devi. 47, 746–755 (2000)

    Article  ADS  Google Scholar 

  144. Zafar, S., Callegari, A., Gusev, E., Fischetti, M.V.: Charge trapping in high k gate dielectric stacks. Electron Devices Meeting. IEDM’ 02. Digest, International, pp. 517–520 (2002)

    Google Scholar 

  145. Zhang, S.B., Northrup, J.E.: Chemical potential dependence of defect formation energies in GaAs: Application to Ga self-diffusion. Phys. Rev. Lett. 67, 2339–2342 (1991)

    Article  ADS  Google Scholar 

  146. Zheng, Y., Woo, C.H.: Giant piezoelectric resistance in ferroelectric tunnel junctions. Nanotechnology 20, 075401 (2009)

    Google Scholar 

  147. Zhuravlev, M.Y., Sabirianov, R.F., Jaswal, S.S., Tsymbal, E.Y.: Giant electroresistance in ferroelectric tunnel junctions. Phys. Rev. Lett. 94, 246802 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, B. (2013). Dielectric Breakdown of Microelectronic and Nanoelectronic Devices. In: Mechanics of Advanced Functional Materials. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33596-9_9

Download citation

Publish with us

Policies and ethics