Anisotropic Rectangular Metric for Polygonal Surface Remeshing

  • Bertrand Pellenard
  • Jean-Marie Morvan
  • Pierre Alliez
Conference paper


We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.


Priority Queue Shift Vector Input Surface Tolerance Region Anisotropic Mesh 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alliez, P., Cohen-Steiner, D., Devillers, O., Lévy, B., Desbrun, M.: Anisotropic polygonal remeshing. ACM Trans. Graph. 22(3), 485–493 (2003)CrossRefGoogle Scholar
  2. 2.
    Boissonnat, J.-D., Wormser, C., Yvinec, M.: Locally uniform anisotropic meshing. In: Proc. Annual Symposium on Computational Geometry, pp. 270–277 (2008)Google Scholar
  3. 3.
    Bommes, D., Lempfer, T., Kobbelt, L.: Global structure optimization of quadrilateral meshes. Comput. Graph. Forum 30(2), 375–384 (2011)CrossRefGoogle Scholar
  4. 4.
    Bommes, D., Zimmer, H., Kobbelt, L.: Mixed-integer quadrangulation. ACM Trans. Graph. 28(3) (2009)Google Scholar
  5. 5.
    Canas, G.D., Gortler, S.J.: Orphan-free anisotropic voronoi diagrams. Discrete Comput. Geom. 46, 526–541 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    CGAL, Computational Geometry Algorithms Library,
  7. 7.
    Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape approximation. ACM Trans. Graph. 23, 905–914 (2004)CrossRefGoogle Scholar
  8. 8.
    Du, Q., Wang, D.: Anisotropic centroidal voronoi tessellations and their applications. SIAM J. Scientific Computing 26(3), 737–761 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., Bao, H.: Spectral quadrangulation with orientation and alignment control. In: ACM SIGGRAPH Asia 2008 papers, SIGGRAPH Asia, pp. 147:1–147:9 (2008)Google Scholar
  10. 10.
    Daniels II, J., Silva, C.T., Cohen, E.: Localized quadrilateral coarsening. Comput. Graph. Forum 28(5), 1437–1444 (2009)CrossRefGoogle Scholar
  11. 11.
    Jones, T.R., Durand, F., Desbrun, M.: Non-iterative, feature-preserving mesh smoothing. ACM Transactions on Graphics 22(3) (2003)Google Scholar
  12. 12.
    Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of Computer Computations, pp. 85–103 (1972)Google Scholar
  13. 13.
    Kovacs, D., Myles, A., Zorin, D.: Anisotropic quadrangulation. In: Symposium on Solid and Physical Modeling, pp. 137–146 (2010)Google Scholar
  14. 14.
    Labelle, F., Shewchuk, J.R.: Anisotropic voronoi diagrams and guaranteed-quality anisotropic mesh generation. In: Proc. Annual Symposium on Computational Geometry, pp. 191–200 (2003)Google Scholar
  15. 15.
    Lai, Y.-K., Kobbelt, L., Hu, S.-M.: An incremental approach to feature aligned quad dominant remeshing. In: Proceedings of the ACM Symposium on Solid and Physical Modeling, SPM 2008, pp. 137–145 (2008)Google Scholar
  16. 16.
    Lévy, B., Liu, Y.: L p centroidal voronoi tessellation and its applications. ACM Transactions on Graphics 29(4) (2010)Google Scholar
  17. 17.
    Myles, A., Pietroni, N., Kovacs, D., Zorin, D.: Feature-aligned T-meshes. ACM Trans. Graph 29(4) (2010)Google Scholar
  18. 18.
    Orlowski, M.: A new algorithm for the largest empty rectangle problem. Algorithmica 5(1), 65–73 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Pellenard, B., Alliez, P., Morvan, J.-M.: Isotropic 2d quadrangle meshing with size and orientation control. In: Proceedings of the International Meshing Roundtable, pp. 81–98 (2011)Google Scholar
  20. 20.
    Ray, N., Li, W.C., Lévy, B., Sheffer, A., Alliez, P.: Periodic global parameterization. ACM Trans. Graph. 25(4), 1460–1485 (2006)CrossRefGoogle Scholar
  21. 21.
    Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., Puppo, E.: Practical quad mesh simplification. Comput. Graph. Forum 29(2), 407–418 (2010)CrossRefGoogle Scholar
  22. 22.
    Tarini, M., Puppo, E., Panozzo, D., Pietroni, N., Cignoni, P.: Simple quad domains for field aligned mesh parametrization. ACM Transactions on Graphics 30(6) (2011)Google Scholar
  23. 23.
    Tierny, J., Daniels II, J., Gustavo Nonato, L., Pascucci, V., Silva, C.T.: Inspired quadrangulation. Computer-Aided Design 43(11), 1516–1526 (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Bertrand Pellenard
    • 1
  • Jean-Marie Morvan
    • 2
    • 3
  • Pierre Alliez
    • 1
  1. 1.Inria Sophia AntipolisMéditerranéeFrance
  2. 2.Université Lyon 1/CNRSLyonFrance
  3. 3.King Abdullah University of Science and TechnologyThuwalSaudi Arabia

Personalised recommendations