Advertisement

High Quality Mesh Morphing Using Triharmonic Radial Basis Functions

  • Daniel Sieger
  • Stefan Menzel
  • Mario Botsch

Summary

The adaptation of an existing volumetric simulation mesh to updated parameters of the underlying CAD geometry is a crucial component within automatic design optimization. By avoiding costly automatic or even manual (re-)meshing it enables the automatic generation and evaluation of new design variations, e.g., through FEM or CFD simulations. This is particularly important for stochastic global optimization techniques—such as evolutionary algorithms—which typically require a large number of design variations to be created and evaluated. In this paper we present a simple yet versatile method for high quality mesh morphing. Building upon triharmonic radial basis functions, our shape deformations minimize distortion and thereby implicitly preserve shape quality. Moreover, the same unified code can be used to morph tetrahedral, hexahedral, or arbitrary polyhedral volume meshes. We compare our method to several other recently proposed techniques and show that ours yields superior results in most cases.

Keywords

mesh morphing mesh warping design optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.: LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia (1999)CrossRefGoogle Scholar
  2. 2.
    Baker, T.J.: Mesh movement and metamorphosis. In: Proceedings of the 10th International Meshing Roundtable, pp. 387–396 (2001)Google Scholar
  3. 3.
    Bechmann, D.: Space deformation models survey. Computers & Graphics 18(4), 571 (1994)CrossRefGoogle Scholar
  4. 4.
    de Boer, A., van der Schoot, M., Bijl, H.: Mesh deformation based on radial basis function interpolation. Computers & Structures 85, 784–795 (2007)CrossRefGoogle Scholar
  5. 5.
    Botsch, M., Kobbelt, L.: Real-time shape editing using radial basis functions. Computer Graphics Forum (Proc. Eurographics) 24(3), 611–621 (2005)CrossRefGoogle Scholar
  6. 6.
    Brewer, M., Diachin, L.F., Knupp, P., Leurent, T., Melander, D.: The Mesquite mesh quality improvement toolkit. In: Proceedings of the 12th International Meshing Roundtable, pp. 239–250 (2003)Google Scholar
  7. 7.
    Carr, J.C., Beatson, R.K., Cherrie, J.B., Mitchell, T.J., Fright, W.R., McCallum, B.C., Evans, T.R.: Reconstruction and representation of 3D objects with radial basis functions. In: Proc. of ACM SIGGRAPH, pp. 67–76. ACM, New York (2001)Google Scholar
  8. 8.
    Floater, M.S., Kos, G., Reimers, M.: Mean value coordinates in 3D. Computer Aided Geometric Design 22, 623–631 (2005)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    von Funck, W., Theisel, H., Seidel, H.P.: Vector field-based shape deformations. ACM Transactions on Graphics (Proc. SIGGRAPH) 25(3), 1118–1125 (2006)CrossRefGoogle Scholar
  10. 10.
    Gain, J., Bechmann, D.: A survey of spatial deformation from a user-centered perspective. ACM Transaction on Graphics 27, 107:1–107:21 (2008)Google Scholar
  11. 11.
    Helenbrook, B.T.: Mesh deformation using the biharmonic operator. International Journal for Numerical Methods in Engineering 56, 1007–1021 (2003)MATHCrossRefGoogle Scholar
  12. 12.
    Hormann, K., Sukumar, N.: Maximum entropy coordinates for arbitrary polytopes. Computer Graphics Forum (Proc. Symp. Geometry Processing) 27(5), 1513–1520 (2008)CrossRefGoogle Scholar
  13. 13.
    Jakobsson, S., Amoignon, O.: Mesh deformation using radial basis functions for gradient-based aerodynamic shape optimization. Computers & Fluids 36(6), 1119–1136 (2007)MATHCrossRefGoogle Scholar
  14. 14.
    Joshi, P., Meyer, M., DeRose, T., Green, B., Sanocki, T.: Harmonic coordinates for character articulation. ACM Transactions on Graphics (Proc. SIGGRAPH) 26(3) (2007)Google Scholar
  15. 15.
    Knupp, P.: Achieving finite element mesh quality via optimization of the Jacobian matrix norm and associated quantities. Part I. International Journal for Numerical Methods in Engineering 48(3), 401–420 (2000)MATHCrossRefGoogle Scholar
  16. 16.
    Knupp, P.: Updating meshes on deforming domains: An application of the target-matrix paradigm. Commun. Num. Meth. Engr. 24(6), 467–476 (2007)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Martinez Esturo, J., Rössl, C., Fröhlich, S., Botsch, M., Theisel, H.: Pose correction by space-time integration. In: Proc. of Vision, Modeling, Visualization, pp. 33–40 (2011)Google Scholar
  18. 18.
    Michler, A.K.: Aircraft control surface deflection using RBF-based mesh deformation. International Journal for Numerical Methods in Engineering 88(10), 986–1007 (2011)MATHCrossRefGoogle Scholar
  19. 19.
    OpenCASCADE: Open CASCADE Technology, 3D modeling & numerical simulation (2012), http://www.opencascade.org/
  20. 20.
    Samareh, J.A.: A survey of shape parameterization techniques. Tech. Rep. NASA/CP-1999-209136/PT1, NASA Langley Research Center (1999)Google Scholar
  21. 21.
    Samet, H.: The Design and Analysis of Spatial Data Structures. Addison Wesley, Reading (1994)Google Scholar
  22. 22.
    Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Proc. of ACM SIGGRAPH, pp. 151–159. ACM, New York (1986)Google Scholar
  23. 23.
    Shontz, S.M., Vavasis, S.A.: A mesh warping algorithm based on weighted Laplacian smoothing. In: Proceedings of the 12th International Meshing Roundtable, pp. 147–158 (2003)Google Scholar
  24. 24.
    Sibson, R.: A brief description of natural neighbor interpolation. In: Interpreting Multivariate Data, vol. 21, John Wiley & Sons (1981)Google Scholar
  25. 25.
    Staten, M.L., Canann, S.A., Owen, S.J.: BMSWEEP: Locating interior nodes during sweeping. Eng. Comput. 15(3), 212–218 (1999)MATHCrossRefGoogle Scholar
  26. 26.
    Staten, M.L., Owen, S.J., Shontz, S.M., Salinger, A.G., Coffey, T.S.: A Comparison of Mesh Morphing Methods for 3D Shape Optimization. In: Quadros, W.R. (ed.) Proceedings of the 20th International Meshing Roundtable, vol. 90, pp. 293–311. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  27. 27.
    Sukumar, N.: Construction of polygonal interpolants: A maximum entropy approach. International Journal for Numerical Methods in Engineering 61(12), 2159–2181 (2004)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Sukumar, N., Malsch, E.A.: Recent advances in the construction of polygonal finite element interpolants. Archives of Computational Methods in Engineering 13(1), 129–163 (2006)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Wachspress, E.L.: A Rational Finite Element Basis. Academic Press (1975)Google Scholar
  30. 30.
    Wendland, H.: Scattered Data Approximation. Cambridge University Press, Cambridge (2005)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Bielefeld UniversityBielefeldGermany
  2. 2.Honda Research Institute EuropeOffenbachGermany

Personalised recommendations