Skip to main content

Double Receptor Anchorage of Botulinum Neurotoxins Accounts for their Exquisite Neurospecificity

  • Chapter
  • First Online:
Botulinum Neurotoxins

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 364))

Abstract

The high potency of the botulinum neurotoxins (BoNT) and tetanus neurotoxin (TeNT) is mainly due to their neurospecific binding which is mediated by the interaction with two receptor components. TeNT and all BoNT bind first to complex polysialo-gangliosides abundantly present on the outer leaflet of neuronal membranes. The ganglioside binding occurs in BoNT/A, B, E, F and G via a conserved ganglioside binding pocket within the most carboxyl-terminal 25 kDa domain HCC whereas TeNT, BoNT/C and D display two different ganglioside binding sites within their HCC-domain. Subsequently, upon exocytosis the intraluminal domains of synaptic vesicle proteins are exposed and can be accessed by the surface accumulated neurotoxins. BoNT/B and G bind with their HCC-domain to a 20-mer membrane juxtaposed segment of the intraluminal domain of synaptotagmin-I and -II, respectively. BoNT/A and E employ the intraluminal domain 4 of the synaptic vesicle glycoprotein 2 (SV2) as protein receptor. Whereas the 50 kDa cell binding domain HC of BoNT/A interacts with all three SV2 isoforms, BoNT/E HC only binds SV2A and SV2B. Also, BoNT/D, F, and TeNT employ SV2 for binding and uptake. Thereafter, the synaptic vesicle is recycled and the anchored neurotoxin is endocytosed. Acidification of the vesicle lumen triggers membrane insertion of the translocation domain followed by pore formation and finally translocation of the enzymatically active light chain to its site of action leading to block of neurotransmitter release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BoNT:

botulinum neurotoxin

BoNT/X:

serotype X of BoNT, X = A–G

BoNT/XY:

subtype Y of serotype BoNT/X, Y = 1–8

Cer:

ceramide

CNT:

clostridial neurotoxins

NMJ:

neuromuscular junction

Gal:

β-galactose

GBS:

ganglioside binding site

Glc:

β-glucose

GPI:

glycosylphosphatidylinositol

GT1b, GD1b, GD1a, GM1, GM3, GT2:

sialo ganglioside

HC/X:

heavy chain of BoNT serotype X/TeNT

HCX:

50 kDa cell binding fragment of BoNT/TeNT

HCC :

25 kDa C-terminal domain of the HC

HCN :

25 kDa N-terminal domain of the HC

HNX:

50 kDa translocation domain of BoNT/TeNT

Lac:

lactose

LacCer:

lactose-ceramide

LC/X:

light chain, catalytic domain of BoNT serotype X/TeNT

MS:

mass spectrometry

NAcGal:

N-acetyl-β-galactosamine

NAcNeu:

N-acetylneuraminic acid, sialic acid, Sia

SNAP-25:

synaptosomal associated protein of 25 kDa

SNARE:

soluble N-ethylmaleimide-sensitive factor attachment protein receptor

SV2:

synaptic vesicle glycoprotein 2

Syt-X:

Isoform X of synaptotagmin, X = I-XV

syntaxin-X:

Isoform X of syntaxin, X = 1–19

TeNT:

tetanus neurotoxin

VAMP-2:

synaptobrevin-2

References

  • Ahnert-Hilger G, Münster-Wandowski A, Höltje M (2012) Synaptic vesicle proteins: targets and routes for botulinum neurotoxins. doi:10.1007/978-3-642-33570-9_8

    Google Scholar 

  • Angstrom J, Teneberg S, Karlsson KA (1994) Delineation and comparison of ganglioside-binding epitopes for the toxins of Vibrio cholerae, Escherichia coli, and Clostridium tetani: evidence for overlapping epitopes. Proc Natl Acad Sci USA 91(25):11859–11863

    Article  PubMed  CAS  Google Scholar 

  • Bajjalieh SM, Peterson K, Shinghal R, Scheller RH (1992) SV2, a brain synaptic vesicle protein homologous to bacterial transporters. Science (New York) 257(5074):1271–1273

    Google Scholar 

  • Bajjalieh SM, Peterson K, Linial M, Scheller RH (1993) Brain contains two forms of synaptic vesicle protein 2. Proc Natl Acad Sci USA 90(6):2150–2154

    Article  PubMed  CAS  Google Scholar 

  • Baldwin MR, Barbieri JT (2007) Association of botulinum neurotoxin serotypes a and B with synaptic vesicle protein complexes. Biochemistry 46(11):3200–3210

    Article  PubMed  CAS  Google Scholar 

  • Benson MA, Fu Z, Kim JJ, Baldwin MR (2011) Unique ganglioside recognition strategies for clostridial neurotoxins. J Biol Chem 286(39):34015–34022

    Article  PubMed  CAS  Google Scholar 

  • Bercsenyi K, Giribaldi F, Schiaro G (2012) The elusive compass of clostridial neurotoxins: deciding when and where to go?. doi:10.1007/978-3-642-33570-9_5

    Google Scholar 

  • Berntsson RP-A, Peng L, Svensson LM, Dong M, Stenmark P (2012) Botulinum Neurotoxin Receptor Binding. Abstract 49th IBRCC, BS-1

    Google Scholar 

  • Bigalke H, Muller H, Dreyer F (1986) Botulinum A neurotoxin unlike tetanus toxin acts via a neuraminidase sensitive structure. Toxicon 24(11–12):1065–1074

    Article  PubMed  CAS  Google Scholar 

  • Binz T (2012) Clostridial neurotoxin light chains: devices for SNARE cleavage mediated blockade of neurotransmission. doi:10.1007/978-3-642-33570-9_7

    Google Scholar 

  • Black JD, Dolly JO (1986) Interaction of 125I-labeled botulinum neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake into motor nerves by acceptor-mediated endocytosis. J Cell Biol 103(2):535–544

    Article  PubMed  CAS  Google Scholar 

  • Blum FC, Chen C, Kroken AR, Barbieri JT (2012) Tetanus toxin and botulinum toxin a utilize unique mechanisms to enter neurons of the central nervous system. Infect Immun 80(5):1662–1669

    Article  PubMed  CAS  Google Scholar 

  • Brunger AT, Rummel A (2009) Receptor and substrate interactions of clostridial neurotoxins. Toxicon 54(5):550–560

    Article  PubMed  CAS  Google Scholar 

  • Bullens RW, O’Hanlon GM, Wagner E, Molenaar PC, Furukawa K, Furukawa K, Plomp JJ, Willison HJ (2002) Complex gangliosides at the neuromuscular junction are membrane receptors for autoantibodies and botulinum neurotoxin but redundant for normal synaptic function. J Neurosci 22(16):6876–6884

    PubMed  CAS  Google Scholar 

  • Chai Q, Arndt JW, Dong M, Tepp WH, Johnson EA, Chapman ER, Stevens RC (2006) Structural basis of cell surface receptor recognition by botulinum neurotoxin B. Nature 444(7122):1096–1100

    Article  PubMed  CAS  Google Scholar 

  • Chang WP, Sudhof TC (2009) SV2 renders primed synaptic vesicles competent for Ca2+ -induced exocytosis. J Neurosci 29(4):883–897

    Article  PubMed  CAS  Google Scholar 

  • Chapman ER (2002) Synaptotagmin: a Ca(2+) sensor that triggers exocytosis? Nat Rev Mol Cell Biol 3(7):498–508

    Google Scholar 

  • Chen C, Baldwin MR, Barbieri JT (2008) Molecular basis for tetanus toxin coreceptor interactions. Biochemistry 47(27):7179–7186

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Fu Z, Kim JJ, Barbieri JT, Baldwin MR (2009) Gangliosides as high affinity receptors for tetanus neurotoxin. J Biol Chem 284(39):26569–26577

    Article  PubMed  CAS  Google Scholar 

  • Critchley DR, Habig WH, Fishman PH (1986) Reevaluation of the role of gangliosides as receptors for tetanus toxin. J Neurochem 47(1):213–222

    Article  PubMed  CAS  Google Scholar 

  • Custer KL, Austin NS, Sullivan JM, Bajjalieh SM (2006) Synaptic vesicle protein 2 enhances release probability at quiescent synapses. J Neurosci 26(4):1303–1313

    Article  PubMed  CAS  Google Scholar 

  • Deinhardt K, Berninghausen O, Willison HJ, Hopkins CR, Schiavo G (2006) Tetanus toxin is internalized by a sequential clathrin-dependent mechanism initiated within lipid microdomains and independent of epsin1. J Cell Biol 174(3):459–471

    Article  PubMed  CAS  Google Scholar 

  • Dolly JO, Black J, Williams RS, Melling J (1984) Acceptors for botulinum neurotoxin reside on motor nerve terminals and mediate its internalization. Nature 307(5950):457–60

    Google Scholar 

  • Dong M, Richards DA, Goodnough MC, Tepp WH, Johnson EA, Chapman ER (2003) Synaptotagmins I and II mediate entry of botulinum neurotoxin B into cells. J Cell Biol 162(7):1293–1303

    Article  PubMed  CAS  Google Scholar 

  • Dong M, Yeh F, Tepp WH, Dean C, Johnson EA, Janz R, Chapman ER (2006) SV2 is the protein receptor for botulinum neurotoxin A. Science (New York) 312(5773):592–596

    Google Scholar 

  • Dong M, Tepp WH, Liu H, Johnson EA, Chapman ER (2007) Mechanism of botulinum neurotoxin B and G entry into hippocampal neurons. J Cell Biol 179(7):1511–1522

    Article  PubMed  CAS  Google Scholar 

  • Dong M, Liu H, Tepp WH, Johnson EA, Janz R, Chapman ER (2008) Glycosylated SV2A and SV2B mediate the entry of botulinum neurotoxin E into neurons. Mol Biol Cell 19(12):5226–5237

    Article  PubMed  CAS  Google Scholar 

  • Emsley P, Fotinou C, Black I, Fairweather NF, Charles IG, Watts C, Hewitt E, Isaacs NW (2000) The structures of the HC-fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. J Biol Chem 275(12):8889–8894

    Article  PubMed  CAS  Google Scholar 

  • Eswaramoorthy S, Kumaran D, Swaminathan S (2001) Crystallographic evidence for doxorubicin binding to the receptor-binding site in Clostridium botulinum neurotoxin B. Acta Crystallogr D Biol Crystallogr 57(Pt 11):1743–1746

    Article  PubMed  CAS  Google Scholar 

  • Evinger C, Erichsen JT (1986) Transsynaptic retrograde transport of fragment C of tetanus toxin demonstrated by immunohistochemical localization. Brain Res 380(2):383–388

    Article  PubMed  CAS  Google Scholar 

  • Feany MB, Lee S, Edwards RH, Buckley KM (1992) The synaptic vesicle protein SV2 is a novel type of transmembrane transporter. Cell 70(5):861–867

    Article  PubMed  CAS  Google Scholar 

  • Figueiredo D, Turcotte C, Frankel G, Li Y, Dolly O, Wilkin G, Marriott D, Fairweather N, Dougan G (1995) Characterization of recombinant tetanus toxin derivatives suitable for vaccine development. Infect Immun 63(8):3218–3221

    PubMed  CAS  Google Scholar 

  • Fischer A (2012) Synchronized chaperone function of botulinum neurotoxin domains mediates light chain translocation into neurons. doi:10.1007/978-3-642-33570-9_6

    Google Scholar 

  • Fischer A, Mushrush DJ, Lacy DB, Montal M (2008) Botulinum neurotoxin devoid of receptor binding domain translocates active protease. PLoS Pathog 4(12):e1000245

    Article  PubMed  CAS  Google Scholar 

  • Fishman PS, Carrigan DR (1987) Retrograde transneuronal transfer of the C-fragment of tetanus toxin. Brain Res 406(1–2):275–279

    Article  PubMed  CAS  Google Scholar 

  • Fotinou C, Emsley P, Black I, Ando H, Ishida H, Kiso M, Sinha KA, Fairweather NF, Isaacs NW (2001) The crystal structure of tetanus toxin HC-fragment complexed with a synthetic GT1b analogue suggests cross-linking between ganglioside receptors and the toxin. J Biol Chem 276(34):32274–32281

    Article  PubMed  CAS  Google Scholar 

  • Fu Z, Chen C, Barbieri JT, Kim JJ, Baldwin MR (2009) Glycosylated SV2 and gangliosides as dual receptors for botulinum neurotoxin serotype F. Biochemistry 48(24):5631–5641

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rodriguez C, Geren IN, Lou J, Conrad F, Forsyth C, Wen W, Chakraborti S, Zao H, Manzanarez G, Smith TJ, Brown J, Tepp WH, Liu N, Wijesuriya S, Tomic MT, Johnson EA, Smith LA, Marks JD (2011) Neutralizing human monoclonal antibodies binding multiple serotypes of botulinum neurotoxin. Protein Eng Des Sel 24(3):321–331

    Article  PubMed  CAS  Google Scholar 

  • Geppert M, Archer BT 3rd, Sudhof TC (1991) Synaptotagmin II. A novel differentially distributed form of synaptotagmin. J Biol Chem 266(21):13548–13552

    Google Scholar 

  • Ginalski K, Venclovas C, Lesyng B, Fidelis K (2000) Structure-based sequence alignment for the beta-trefoil subdomain of the clostridial neurotoxin family provides residue level information about the putative ganglioside binding site. FEBS Lett 482(1–2):119–124

    Article  PubMed  CAS  Google Scholar 

  • Gu S, Rumpel S, Zhou J, Strotmeier J, Bigalke H, Perry K, Shoemaker CB, Rummel A, Jin R (2012) Botulinum neurotoxin is shielded by NTNHA in an interlocked complex. Science 335(6071):977–981

    Article  PubMed  CAS  Google Scholar 

  • Herreros J, Lalli G, Schiavo G (2000a) C-terminal half of tetanus toxin fragment C is sufficient for neuronal binding and interaction with a putative protein receptor. Biochem J 347(Pt 1):199–204

    Article  PubMed  CAS  Google Scholar 

  • Herreros J, Lalli G, Montecucco C, Schiavo G (2000b) Tetanus toxin fragment C binds to a protein present in neuronal cell lines and motoneurons. J Neurochem 74(5):1941–1950

    Article  PubMed  CAS  Google Scholar 

  • Herreros J, Ng T, Schiavo G (2001) Lipid rafts act as specialized domains for tetanus toxin binding and internalization into neurons. Mol Biol Cell 12(10):2947–2960

    PubMed  CAS  Google Scholar 

  • Hill KK and Smith TJ (2012) Genetic diversity within clostridium botulinum serotypes, botulinum neurotoxin gene clusters and toxin subtypes. doi:10.1007/978-3-642-33570-9_1

    Google Scholar 

  • Holmgren J, Elwing H, Fredman P, Strannegard O, Svennerholm L (1980) Gangliosides as receptors for bacterial toxins and sendai virus. Adv Exp Med Biol 125:453–470

    Article  PubMed  CAS  Google Scholar 

  • Hughes R, Whaler BC (1962) Influence of nerve-ending activity and of drugs on the rate of paralysis of rat diaphragm preparations by Cl. botulinum type A toxin. J Physiol 160:221–233

    PubMed  CAS  Google Scholar 

  • Ihara H, Kohda T, Morimoto F, Tsukamoto K, Karasawa T, Nakamura S, Mukamoto M, Kozaki S (2003) Sequence of the gene for Clostridium botulinum type B neurotoxin associated with infant botulism, expression of the C-terminal half of heavy chain and its binding activity. Biochim Biophys Acta 1625(1):19–26

    Article  PubMed  CAS  Google Scholar 

  • Janz R, Sudhof TC (1999) SV2C is a synaptic vesicle protein with an unusually restricted localization: anatomy of a synaptic vesicle protein family. Neuroscience 94(4):1279–1290

    Article  PubMed  CAS  Google Scholar 

  • Jayaraman S, Eswaramoorthy S, Kumaran D, Swaminathan S (2005) Common binding site for disialyllactose and tri-peptide in C-fragment of tetanus neurotoxin. Proteins 61(2):288–295

    Article  PubMed  CAS  Google Scholar 

  • Jin R, Rummel A, Binz T, Brunger AT (2006) Botulinum neurotoxin B recognizes its protein receptor with high affinity and specificity. Nature 444(7122):1092–1095

    Article  PubMed  CAS  Google Scholar 

  • Kamata Y, Kozaki S, Sakaguchi G, Iwamori M, Nagai Y (1986) Evidence for direct binding of Clostridium botulinum type E derivative toxin and its fragments to gangliosides and free fatty acids. Biochem Biophys Res Commun 140(3):1015–1019

    Article  PubMed  CAS  Google Scholar 

  • Karalewitz AP, Kroken AR, Fu Z, Baldwin MR, Kim JJ, Barbieri JT (2010) Identification of a unique ganglioside binding loop within botulinum neurotoxins C and D-SA. Biochemistry 49(37):8117–8126

    Article  PubMed  CAS  Google Scholar 

  • Keller JE, Cai F, Neale EA (2004) Uptake of botulinum neurotoxin into cultured neurons. Biochemistry 43(2):526–532

    Article  PubMed  CAS  Google Scholar 

  • Kitamura M, Iwamori M, Nagai Y (1980) Interaction between Clostridium botulinum neurotoxin and gangliosides. Biochim Biophys Acta 628(3):328–335

    Article  PubMed  CAS  Google Scholar 

  • Kitamura M, Takamiya K, Aizawa S, Furukawa K (1999) Gangliosides are the binding substances in neural cells for tetanus and botulinum toxins in mice. Biochim Biophys Acta 1441(1):1–3

    Article  PubMed  CAS  Google Scholar 

  • Kitamura M, Igimi S, Furukawa K, Furukawa K (2005) Different response of the knockout mice lacking b-series gangliosides against botulinum and tetanus toxins. Biochim Biophys Acta 1741(1–2):1–3

    PubMed  CAS  Google Scholar 

  • Kozaki S, Ogasawara J, Shimote Y, Kamata Y, Sakaguchi G (1987) Antigenic structure of Clostridium botulinum type B neurotoxin and its interaction with gangliosides, cerebroside, and free fatty acids. Infect Immun 55(12):3051–3056

    PubMed  CAS  Google Scholar 

  • Kozaki S, Kamata Y, Watarai S, Nishiki T, Mochida S (1998) Ganglioside GT1b as a complementary receptor component for Clostridium botulinum neurotoxins. Microb Pathog 25(2):91–99

    Article  PubMed  CAS  Google Scholar 

  • Kroken AR, Karalewitz AP, Fu Z, Kim JJ, Barbieri JT (2011) Novel ganglioside-mediated entry of botulinum neurotoxin serotype D into neurons. J Biol Chem 286(30):26828–26837

    Article  PubMed  CAS  Google Scholar 

  • Kumaran D, Eswaramoorthy S, Furey W, Navaza J, Sax M, Swaminathan S (2009) Domain organization in Clostridium botulinum neurotoxin type E is unique: its implication in faster translocation. J Mol Biol 386(1):233–245

    Article  PubMed  CAS  Google Scholar 

  • Lalli G, Herreros J, Osborne SL, Montecucco C, Rossetto O, Schiavo G (1999) Functional characterisation of tetanus and botulinum neurotoxins binding domains. J Cell Sci 112(Pt 16):2715–2724

    PubMed  CAS  Google Scholar 

  • Lawrence G, Wang J, Chion CK, Aoki KR, Dolly JO (2007) Two protein trafficking processes at motor nerve endings unveiled by botulinum neurotoxin E. J Pharmacol Exp Ther 320(1):410–418

    Article  PubMed  CAS  Google Scholar 

  • Lazarovici P, Yavin E (1986) Affinity-purified tetanus neurotoxin interaction with synaptic membranes: properties of a protease-sensitive receptor component. Biochemistry 25(22):7047–7054

    Article  PubMed  CAS  Google Scholar 

  • Lightstone FC, Prieto MC, Singh AK, Piqueras MC, Whittal RM, Knapp MS, Balhorn R, Roe DC (2000) Identification of novel small molecule ligands that bind to tetanus toxin. Chem Res Toxicol 13(5):356–362

    Article  PubMed  CAS  Google Scholar 

  • Louch HA, Buczko ES, Woody MA, Venable RM, Vann WF (2002) Identification of a binding site for ganglioside on the receptor binding domain of tetanus toxin. Biochemistry 41(46):13644–13652

    Article  PubMed  CAS  Google Scholar 

  • Mahrhold S (2008) Identifizierung neuronaler proteinrezeptoren clostridieller neurotoxine. Leibniz Universität Hannover, Hannover

    Google Scholar 

  • Mahrhold S, Rummel A, Bigalke H, Davletov B, Binz T (2006) The synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into phrenic nerves. FEBS Lett 580(8):2011–2014

    Article  PubMed  CAS  Google Scholar 

  • Marxen P, Bigalke H (1989) Tetanus toxin: inhibitory action in chromaffin cells is initiated by specified types of gangliosides and promoted in low ionic strength solution. Neurosci Lett 107(1–3):261–266

    Article  PubMed  CAS  Google Scholar 

  • Marxen P, Fuhrmann U, Bigalke H (1989) Gangliosides mediate inhibitory effects of tetanus and botulinum A neurotoxins on exocytosis in chromaffin cells. Toxicon 27(8):849–859

    Article  PubMed  CAS  Google Scholar 

  • Marxen P, Erdmann G, Bigalke H (1991) The translocation of botulinum A neurotoxin by chromaffin cells is promoted in low ionic strength solution and is insensitive to trypsin. Toxicon 29(2):181–189

    Article  PubMed  CAS  Google Scholar 

  • Matteoli M, Verderio C, Rossetto O, Iezzi N, Coco S, Schiavo G, Montecucco C (1996) Synaptic vesicle endocytosis mediates the entry of tetanus neurotoxin into hippocampal neurons. Proc Natl Acad Sci USA 93(23):13310–13315

    Article  PubMed  CAS  Google Scholar 

  • Montecucco C (1986) How do tetanus and botulinum toxins bind to neuronal membranes? Trends Biochem Sci 11(8):314–317

    Article  CAS  Google Scholar 

  • Moriishi K, Koura M, Abe N, Fujii N, Fujinaga Y, Inoue K, Ogumad K (1996) Mosaic structures of neurotoxins produced from Clostridium botulinum types C and D organisms. Biochim Biophys Acta 1307(2):123–126

    Article  PubMed  Google Scholar 

  • Munro P, Kojima H, Dupont JL, Bossu JL, Poulain B, Boquet P (2001) High sensitivity of mouse neuronal cells to tetanus toxin requires a GPI-anchored protein. Biochem Biophys Res Commun 289(2):623–629

    Article  PubMed  CAS  Google Scholar 

  • Muraro L, Tosatto S, Motterlini L, Rossetto O, Montecucco C (2009) The N-terminal half of the receptor domain of botulinum neurotoxin A binds to microdomains of the plasma membrane. Biochem Biophys Res Commun 380(1):76–80

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Kohda T, Shibata Y, Tsukamoto K, Arimitsu H, Hayashi M, Mukamoto M, Sasakawa N, Kozaki S (2012) Unique biological activity of botulinum D/C mosaic neurotoxin in murine species. Infect Immun 80(8):2886–2893

    Article  PubMed  CAS  Google Scholar 

  • Niemann H, Blasi J, Jahn R (1994) Clostridial neurotoxins: new tools for dissecting exocytosis. Trends Cell Biol 4(5):179–185

    Article  PubMed  CAS  Google Scholar 

  • Nishiki T, Kamata Y, Nemoto Y, Omori A, Ito T, Takahashi M, Kozaki S (1994) Identification of protein receptor for Clostridium botulinum type B neurotoxin in rat brain synaptosomes. J Biol Chem 269(14):10498–10503

    PubMed  CAS  Google Scholar 

  • Nishiki T, Tokuyama Y, Kamata Y, Nemoto Y, Yoshida A, Sato K, Sekiguchi M, Takahashi M, Kozaki S (1996a) The high-affinity binding of Clostridium botulinum type B neurotoxin to synaptotagmin II associated with gangliosides GT1b/GD1a. FEBS Lett 378(3):253–257

    Article  PubMed  CAS  Google Scholar 

  • Nishiki T, Tokuyama Y, Kamata Y, Nemoto Y, Yoshida A, Sekiguchi M, Takahashi M, Kozaki S (1996b) Binding of botulinum type B neurotoxin to Chinese hamster ovary cells transfected with rat synaptotagmin II cDNA. Neurosci Lett 208(2):105–108

    Article  PubMed  CAS  Google Scholar 

  • Nowack A, Yao J, Custer KL, Bajjalieh SM (2010) SV2 regulates neurotransmitter release via multiple mechanisms. Am J Physiol Cell Physiol 299(5):C960–C967

    Article  PubMed  CAS  Google Scholar 

  • Nuemket N, Tanaka Y, Tsukamoto K, Tsuji T, Nakamura K, Kozaki S, Yao M, Tanaka I (2011) Structural and mutational analyses of the receptor binding domain of botulinum D/C mosaic neurotoxin: insight into the ganglioside binding mechanism. Biochem Biophys Res Commun 411(2):433–439

    Article  PubMed  CAS  Google Scholar 

  • Ochanda JO, Syuto B, Ohishi I, Naiki M, Kubo S (1986) Binding of Clostridium botulinum neurotoxin to gangliosides. J Biochem (Tokyo) 100(1):27–33

    CAS  Google Scholar 

  • Peng L, Tepp WH, Johnson EA, Dong M (2011) Botulinum neurotoxin D uses synaptic vesicle protein SV2 and gangliosides as receptors. PLoS Pathog 7(3):e1002008

    Article  PubMed  CAS  Google Scholar 

  • Peng L, Berntsson RP, Tepp WH, Pitkin RM, Johnson EA, Stenmark P, Dong M (2012) Botulinum neurotoxin D-C uses synaptotagmin I/II as receptors and human synaptotagmin II is not an effective receptor for type B, D-C, and G toxins. J Cell Sci 125(Pt 13):3233–3242

    Article  PubMed  CAS  Google Scholar 

  • Perin MS, Fried VA, Mignery GA, Jahn R, Sudhof TC (1990) Phospholipid binding by a synaptic vesicle protein homologous to the regulatory region of protein kinase C. Nature 345(6272):260–263

    Article  PubMed  CAS  Google Scholar 

  • Pierce EJ, Davison MD, Parton RG, Habig WH, Critchley DR (1986) Characterization of tetanus toxin binding to rat brain membranes. Evidence for a high-affinity proteinase-sensitive receptor. Biochem J 236(3):845–852

    PubMed  CAS  Google Scholar 

  • Pirazzini M, Rossetto O, Bolognese P, Shone CC, Montecucco C (2011) Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cell Microbiol 13(11):1731–1743

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Bade S, Alves J, Bigalke H, Binz T (2003) Two carbohydrate binding sites in the HCC-domain of tetanus neurotoxin are required for toxicity. J Mol Biol 326(3):835–847

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Mahrhold S, Bigalke H, Binz T (2004a) The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol Microbiol 51(3):631–643

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Karnath T, Henke T, Bigalke H, Binz T (2004b) Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. J Biol Chem 279(29):30865–30870

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Eichner T, Weil T, Karnath T, Gutcaits A, Mahrhold S, Sandhoff K, Proia RL, Acharya KR, Bigalke H, Binz T (2007) Identification of the protein receptor binding site of botulinum neurotoxins B and G proves the double-receptor concept. Proc Natl Acad Sci USA 104(1):359–364

    Article  PubMed  CAS  Google Scholar 

  • Rummel A, Häfner K, Mahrhold S, Darashchonak N, Holt M, Jahn R, Beermann S, Karnath T, Bigalke H, Binz T (2009) Botulinum neurotoxins C, E and F bind gangliosides via a conserved binding site prior to stimulation-dependent uptake with botulinum neurotoxin F utilising the three isoforms of SV2 as second receptor. J Neurochem 110(6):1942–1954

    Article  PubMed  CAS  Google Scholar 

  • Schengrund CL, DasGupta BR, Ringler NJ (1991) Binding of botulinum and tetanus neurotoxins to ganglioside GT1b and derivatives thereof. J Neurochem 57(3):1024–1032

    Article  PubMed  CAS  Google Scholar 

  • Schmitt A, Dreyer F, John C (1981) At least three sequential steps are involved in the tetanus toxin-induced block of neuromuscular transmission. Naunyn Schmiedebergs Arch Pharmacol 317(4):326–330

    Article  PubMed  CAS  Google Scholar 

  • Schmitt J, Karalewitz A, Benefield DA, Mushrush DJ, Pruitt RN, Spiller BW, Barbieri JT, Lacy DB (2010) Structural analysis of botulinum neurotoxin type G receptor binding. Biochemistry 49(25):5200–5205

    Article  PubMed  CAS  Google Scholar 

  • Shapiro RE, Specht CD, Collins BE, Woods AS, Cotter RJ, Schnaar RL (1997) Identification of a ganglioside recognition domain of tetanus toxin using a novel ganglioside photoaffinity ligand. J Biol Chem 272(48):30380–30386

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker CB and Oyler GA (2012) Persistence of botulinum neurotoxin inactivation of nerve function. doi:10.1007/978-3-642-33570-9_9

    Google Scholar 

  • Simpson LL (1980) Kinetic studies on the interaction between botulinum toxin type A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 212(1):16–21

    PubMed  CAS  Google Scholar 

  • Simpson LL (1982) A comparison of the pharmacological properties of Clostridium botulinum type C1 and C2 toxins. J Pharmacol Exp Ther 223(3):695–701

    PubMed  CAS  Google Scholar 

  • Simpson LL (1984a) Botulinum toxin and tetanus toxin recognize similar membrane determinants. Brain Res 305(1):177–180

    Article  CAS  Google Scholar 

  • Simpson LL (1984b) The binding fragment from tetanus toxin antagonizes the neuromuscular blocking actions of botulinum toxin. J Pharmacol Exp Ther 229(1):182–187

    CAS  Google Scholar 

  • Simpson LL (1985) Pharmacological experiments on the binding and internalization of the 50,000 dalton carboxyterminus of tetanus toxin at the cholinergic neuromuscular junction. J Pharmacol Exp Ther 234(1):100–105

    PubMed  CAS  Google Scholar 

  • Simpson LL, Rapport MM (1971a) Ganglioside inactivation of botulinum toxin. J Neurochem 18(7):1341–1343

    Article  CAS  Google Scholar 

  • Simpson LL, Rapport MM (1971b) The binding of botulinum toxin to membrane lipids: sphingolipids, steroids and fatty acids. J Neurochem 18(9):1751–1759

    Article  CAS  Google Scholar 

  • Sinha K, Box M, Lalli G, Schiavo G, Schneider H, Groves M, Siligardi G, Fairweather N (2000) Analysis of mutants of tetanus toxin Hc-fragment: ganglioside binding, cell binding and retrograde axonal transport properties. Mol Microbiol 37(5):1041–1051

    Article  PubMed  CAS  Google Scholar 

  • Stenmark P, Dupuy J, Imamura A, Kiso M, Stevens RC (2008) Crystal structure of botulinum neurotoxin type A in complex with the cell surface co-receptor GT1b-insight into the toxin-neuron interaction. PLoS Pathog 4(8):e1000129

    Article  PubMed  CAS  Google Scholar 

  • Stenmark P, Dong M, Dupuy J, Chapman ER, Stevens RC (2010) Crystal structure of the botulinum neurotoxin type G binding domain: insight into cell surface binding. J Mol Biol 397(5):1287–1297

    Article  PubMed  CAS  Google Scholar 

  • Strotmeier J, Lee K, Völker AK, Mahrhold S, Zong Y, Zeiser J, Zhou J, Pich A, Bigalke H, Binz T, Rummel A, Jin R (2010) Botulinum neurotoxin serotype D attacks neurons via two carbohydrate-binding sites in a ganglioside-dependent manner. Biochem J 431(2):207–216

    Article  PubMed  CAS  Google Scholar 

  • Strotmeier J, Gu S, Jutzi S, Mahrhold S, Zhou J, Pich A, Eichner T, Bigalke H, Rummel A, Jin R, Binz T (2011) The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites. Mol Microbiol. 81(1):143–156

    Article  PubMed  CAS  Google Scholar 

  • Strotmeier J, Willjes G, Binz T, Rummel A (2012) Human synaptotagmin-II is not a high affinity receptor for botulinum neurotoxin B and G: increased therapeutic dosage and immunogenicity. FEBS Lett 586(4):310–313

    Article  PubMed  CAS  Google Scholar 

  • Sudhof TC (2002) Synaptotagmins: why so many? J Biol Chem 277(10):7629–7632

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Suresh S, Liu H, Tepp WH, Johnson EA, Edwardson JM, Chapman ER (2011) Receptor binding enables botulinum neurotoxin B to sense low pH for translocation channel assembly. Cell Host Microbe 10(3):237–247

    Article  PubMed  CAS  Google Scholar 

  • Sun S, Tepp WH, Johnson EA, Chapman ER (2012) Botulinum neurotoxins B and E translocate at different rates and exhibit divergent responses to GT1b and low pH. Biochemistry 50(14):2711–2713

    Google Scholar 

  • Sutton JM, Chow-Worn O, Spaven L, Silman NJ, Hallis B, Shone CC (2001) Tyrosine-1290 of tetanus neurotoxin plays a key role in its binding to gangliosides and functional binding to neurones. FEBS Lett 493(1):45–49

    Article  PubMed  CAS  Google Scholar 

  • Svennerholm L (1994) Designation and schematic structure of gangliosides and allied glycosphingolipids. Progress in brain research. 101:XI–XIV

    Google Scholar 

  • Swaminathan S, Eswaramoorthy S (2000) Structural analysis of the catalytic and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 7(8):693–699

    Article  PubMed  CAS  Google Scholar 

  • Takamizawa K, Iwamori M, Kozaki S, Sakaguchi G, Tanaka R, Takayama H, Nagai Y (1986) TLC immunostaining characterization of Clostridium botulinum type A neurotoxin binding to gangliosides and free fatty acids. FEBS Lett 201(2):229–232

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto K, Kohda T, Mukamoto M, Takeuchi K, Ihara H, Saito M, Kozaki S (2005) Binding of Clostridium botulinum type C and D neurotoxins to ganglioside and phospholipid. Novel insights into the receptor for clostridial neurotoxins. J Biol Chem 280(42):35164–35171

    Article  PubMed  CAS  Google Scholar 

  • Tsukamoto K, Kozai Y, Ihara H, Kohda T, Mukamoto M, Tsuji T, Kozaki S (2008) Identification of the receptor-binding sites in the carboxyl-terminal half of the heavy chain of botulinum neurotoxin types C and D. Microb Pathog 44(6):484–493

    Article  PubMed  CAS  Google Scholar 

  • van Heyningen WE (1958) Identity of the tetanus toxin receptor in nervous tissue. Nature 182(4652):1809

    Article  Google Scholar 

  • van Heyningen WE (1959) Tentative Identification of the tetanus toxin receptor in nervous tissue. J Gen Microbiol 20:810–820

    Google Scholar 

  • van Heyningen WE, Miller PA (1961) The fixation of tetanus toxin by ganglioside. J Gen Microbiol 24:107–119

    Article  Google Scholar 

  • Verderio C, Coco S, Rossetto O, Montecucco C, Matteoli M (1999) Internalization and proteolytic action of botulinum toxins in CNS neurons and astrocytes. J Neurochem 73(1):372–379

    Article  PubMed  CAS  Google Scholar 

  • Wan QF, Zhou ZY, Thakur P, Vila A, Sherry DM, Janz R, Heidelberger R (2010) SV2 acts via presynaptic calcium to regulate neurotransmitter release. Neuron 66(6):884–895

    Article  PubMed  CAS  Google Scholar 

  • Williamson LC, Bateman KE, Clifford JC, Neale EA (1999) Neuronal sensitivity to tetanus toxin requires gangliosides. J Biol Chem 274(35):25173–25180

    Article  PubMed  CAS  Google Scholar 

  • Xu T, Bajjalieh SM (2001) SV2 modulates the size of the readily releasable pool of secretory vesicles. Nat Cell Biol 3(8):691–698

    Article  PubMed  CAS  Google Scholar 

  • Yao J, Nowack A, Kensel-Hammes P, Gardner RG, Bajjalieh SM (2010) Cotrafficking of SV2 and synaptotagmin at the synapse. J Neurosci 30(16):5569–5578

    Article  PubMed  CAS  Google Scholar 

  • Yeh FL, Dong M, Yao J, Tepp WH, Lin G, Johnson EA, Chapman ER (2010) SV2 mediates entry of tetanus neurotoxin into central neurons. PLoS Pathog 6(11):e1001207

    Article  PubMed  CAS  Google Scholar 

  • Yokosawa N, Kurokawa Y, Tsuzuki K, Syuto B, Fujii N, Kimura K, Oguma K (1989) Binding of Clostridium botulinum type C neurotoxin to different neuroblastoma cell lines. Infect Immun 57(1):272–277

    PubMed  CAS  Google Scholar 

  • Yowler BC, Schengrund CL (2004) Botulinum neurotoxin A changes conformation upon binding to ganglioside GT1b. Biochemistry 43(30):9725–9731

    Article  PubMed  CAS  Google Scholar 

  • Yowler BC, Kensinger RD, Schengrund CL (2002) Botulinum neurotoxin A activity is dependent upon the presence of specific gangliosides in neuroblastoma cells expressing synaptotagmin I. J Biol Chem 277(36):32815–32819

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Buchko GW, Qin L, Robinson H, Varnum SM (2010) Structural analysis of the receptor binding domain of botulinum neurotoxin serotype D. Biochem Biophys Res Commun 401(4):498–503

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Buchko GW, Qin L, Robinson H, Varnum SM (2011) Crystal structure of the receptor binding domain of the botulinum C-D mosaic neurotoxin reveals potential roles of lysines 1118 and 1136 in membrane interactions. Biochem Biophys Res Commun 404(1):407–412

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The author is thankful to Dr. Thomas Binz for critically reviewing the manuscript and to his colleagues and collaborators for contributing to this research. Special thanks are due to Drs. Jasmin Strotmeier, Johannes Bigalke and Stefan Mahrhold, and to Nadja Krez and Anna Magdalena Kruel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Rummel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rummel, A. (2012). Double Receptor Anchorage of Botulinum Neurotoxins Accounts for their Exquisite Neurospecificity. In: Rummel, A., Binz, T. (eds) Botulinum Neurotoxins. Current Topics in Microbiology and Immunology, vol 364. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33570-9_4

Download citation

Publish with us

Policies and ethics