Skip to main content

A Fast Lesion Registration to Assist Coronary Heart Disease Diagnosis in CTA Images

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 7594)

Abstract

This work introduces a 3D+t coronary registration strategy to minimize the navigation among cardiac phases during the process of ischaemic heart disease diagnosis. We propose to register image sub-volumes containing suspected arterial lesions at two cardiac phases, instead of performing a registration of the complete cardiac volume through the whole cardiac cycle. The method first automatically defines the extent of the sub-volumes to be aligned, then the registration is performed in two steps: a coarse rigid alignment and a deformable registration. Our method provides comparable results and is computationally less expensive than previous approaches that make use of larger spatial and temporal information.

Keywords

  • Compute Tomography Angiography
  • Leave Anterior Descend
  • Right Coronary Artery
  • Normalize Mutual Information
  • Cardiac Phasis

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-642-33564-8_85
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-642-33564-8
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aylward, S.R., Jomier, J., Weeks, S., Bullit, E.: Registration and analysis of vascular images. Int. J. Comput. Vision 55(2), 123–138 (2003)

    CrossRef  Google Scholar 

  2. Laguitton, S., Boldak, C., Bousse, A., Yang, C., Toumoulin, C.: Temporal tracking of coronaries in MSCTA by means of 3D geometrical moments. In: 28th IEEE EMBS Conf., New York City (USA), pp. 924–927 (2006)

    Google Scholar 

  3. Metz, C.T., Schaap, M., Klein, S., Neefjes, L.A., Capuano, E., Schultz, C., van Geuns, R.J., Serruys, P.W., van Walsum, T., Niessen, W.J.: Patient Specific 4D Coronary Models from ECG-gated CTA Data for Intra-operative Dynamic Alignment of CTA with X-ray Images. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009, Part I. LNCS, vol. 5761, pp. 369–376. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  4. Zhang, D.P., Edwards, E., Mei, L., Rueckert, D.: 4D motion modeling of the coronary arteries from CT images for robotic assisted minimally invasive surgery. In: SPIE Med. Imaging, Orlando (USA), vol. 7259 (2009)

    Google Scholar 

  5. Zuluaga, M.A., Hush, D., Delgado Leyton, E.J.F., Hernández Hoyos, M., Orkisz, M.: Learning from Only Positive and Unlabeled Data to Detect Lesions in Vascular CT Images. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 9–16. Springer, Heidelberg (2011)

    CrossRef  Google Scholar 

  6. Zuluaga, M.A., Magnin, I.E., Hernández Hoyos, M., Delgado Leyton, E.J.F., Lozano, F., Orkisz, M.: Automatic detection of abnormal vascular cross-sections based on Density Level Detection and Support Vector Machines. Int. J. Computer Assist. Radiol. Surg. 6(2), 163–174 (2011)

    CrossRef  Google Scholar 

  7. Shechter, G., Resar, J.R., McVeigh, E.R.: Displacement and velocity of the coronary arteries: cardiac and respiratory motion. IEEE Trans. Med. Imaging 23(3), 369–375 (2006)

    CrossRef  Google Scholar 

  8. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Non-rigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging. 18(8), 712–721 (1999)

    CrossRef  Google Scholar 

  9. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    CrossRef  Google Scholar 

  10. Mattes, D., Haynor, D.R., Vesselle, H., Lewellen, T.K., Eubank, W.: PET-CT image registration in the chest using free-form deformations. IEEE Trans. Med. Imaging 22(1), 120–128 (2003)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zuluaga, M.A., Hernández Hoyos, M., Dávila, J.C., Uriza, L.F., Orkisz, M. (2012). A Fast Lesion Registration to Assist Coronary Heart Disease Diagnosis in CTA Images. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2012. Lecture Notes in Computer Science, vol 7594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33564-8_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33564-8_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33563-1

  • Online ISBN: 978-3-642-33564-8

  • eBook Packages: Computer ScienceComputer Science (R0)