Revisiting Component Tree Based Segmentation Using Meaningful Photometric Informations

  • Michał Kazimierz Kowalczyk
  • Bertrand Kerautret
  • Benoît Naegel
  • Jonathan Weber
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7594)

Abstract

This paper proposes to revisit a recent interactive segmentation algorithm based on an original image representation called the component-tree [1]. This method relies on an optimisation process allowing to choose a segmentation result fitting at best some image markers defined by the user. We propose different solutions to improve the efficiency of the method, in particular by including meaningful photometric informations and by assessing automatically the user parameter α.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Passat, N., Naegel, B., Rousseau, F., Koob, M., Dietemann, J.L.: Interactive segmentation based on component-trees. Pattern Recognition 44, 2539–2554 (2011)CrossRefMATHGoogle Scholar
  2. 2.
    Liu, D., Xiong, Y., Shapiro, L., Pulli, K.: Robust interactive image segmentation with automatic boundary refinement. In: Proc. of ICIP, pp. 225–228 (2010)Google Scholar
  3. 3.
    Kerautret, B., Lachaud, J.O.: Meaningful scales detection along digital contours for unsupervised local noise estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence (in press, 2012),10.1109/TPAMI.2012.38.Google Scholar
  4. 4.
    Naegel, B., Passat, N.: Component-Trees and Multi-value Images: A Comparative Study. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 261–271. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Passat, N., Naegel, B.: An extension of component-trees to partial orders. In: Proc. of ICIP, pp. 3981–3984 (2009)Google Scholar
  6. 6.
    Kerautret, B., Lachaud, J.O.: Meaningful scale detection: online demonstration (2009), http://kerrecherche.iutsd.uhp-nancy.fr/MeaningfulBoxes
  7. 7.
    Alvarez, L., Baumela, L., Henrquez, P., Mrquez-Neila, P.: Morphological snakes. In: CVPR 2010, pp. 2197–2202 (2010)Google Scholar
  8. 8.
  9. 9.
    DGtal team: DGtal: Digital geometry tools and algorithms library (2012), http://liris.cnrs.fr/dgtal.
  10. 10.
    Weber, J., Lefèvre, S., Gançarski, P.: Spatio-temporal Quasi-Flat Zones for Morphological Video Segmentation. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 178–189. Springer, Heidelberg (2011)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Michał Kazimierz Kowalczyk
    • 1
  • Bertrand Kerautret
    • 1
  • Benoît Naegel
    • 2
  • Jonathan Weber
    • 1
  1. 1.LORIA, UMR 7503Université de LorraineFrance
  2. 2.LSIIT, UMR 7005Université de StrasbourgFrance

Personalised recommendations