Skip to main content

Euler’s Approximations to Image Reconstruction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7594))

Abstract

In this paper we present a new method to reconstruction of images with additive Gaussian noise. In order to solve this inverse problem we use stochastic differential equations with reflecting boundary (in short reflected SDEs). The continuous model of the image denoising is expressed in terms of such equations. The reconstruction algorithm is based on Euler’s approximations of solutions to reflected SDEs.

We consider a classical Euler scheme with random terminal time and controlled parameter of diffusion. The reconstruction time of our method is substantially reduced in comparison with classical Euler’s scheme. Our numerical experiments show that the new algorithm gives very good results and compares favourably with other image denoising filters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aubert, G., Barlaud, M., Charbonnier, P., Blanc-Féraud, L.: Two Deterministic Half-Quadratic Regularization Algorithms for Computed Imaging. In: Image Processing, Proceedings ICIP 1994, pp. 168–172 (1994)

    Google Scholar 

  2. Aubert, G., Kornprobst, P.: Mathematical problems in image processing. Springer, New York (2002)

    MATH  Google Scholar 

  3. Borkowski, D.: Modified diffusion to image denoising. Adv. Soft Comp. 45, 92–99 (2007)

    Article  Google Scholar 

  4. Borkowski, D.: Smoothing, Enhancing Filters in Terms of Backward Stochastic Differential Equations. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds.) ICCVG 2010, Part I. LNCS, vol. 6374, pp. 233–240. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Chan, T.F., Shen, J.J.: Image Processing and Analysis – Variational, PDE, wavelet, and stochastic methods. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  6. El Karoui, N., Mazliak, L. (eds.): Backward stochastic differential equations. Pitman Research Notes in Mathematics Series. Longman (1997)

    Google Scholar 

  7. Juan, O., Keriven, R., Postelnicu, G.: Stochastic Motion and the Level Set Method in Computer Vision: Stochastic Active Contours. Int. J. Comput. Vision 69(1), 7–25 (2006)

    Article  Google Scholar 

  8. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  9. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1-4), 259–268 (1992)

    Article  MATH  Google Scholar 

  10. Saisho, Y.: Stochastic differential equations for multidimensional domain with reflecting boundary. Probab. Theory Rel. 74(3), 455–477 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Słomiński, L.: Euler’s approximations of solutions of SDEs with reflecting boundary. Stoch. Proc. Appl. 94, 317–337 (2001)

    Article  MATH  Google Scholar 

  12. Tanaka, H.: Stochastic differential equations with reflecting boundary condition in convex regions. Hiroshima Math. J. 9(1), 163–177 (1979)

    MathSciNet  MATH  Google Scholar 

  13. Unal, G., Krim, H., Yezzi, A.: Stochastic differential equations and geometric flows. IEEE Trans. Image Process. 11(12), 1405–1416 (2002)

    Article  MathSciNet  Google Scholar 

  14. Unal, G., Ben-Arous, G., Nain, D., Shimkin, N., Tannenbaum, A., Zeitouni, O.: Algorithms for stochastic approximations of curvature flows. In: Image Processing, Proceedings ICIP 2003, vol. 2–3, pp. 651–654 (2003)

    Google Scholar 

  15. Weickert, J.: Theoretical Foundations Of Anisotropic Diffusion In Image Processing. Computing Suppement 11, 221–236 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Borkowski, D. (2012). Euler’s Approximations to Image Reconstruction. In: Bolc, L., Tadeusiewicz, R., Chmielewski, L.J., Wojciechowski, K. (eds) Computer Vision and Graphics. ICCVG 2012. Lecture Notes in Computer Science, vol 7594. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33564-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33564-8_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33563-1

  • Online ISBN: 978-3-642-33564-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics