Skip to main content

A Generic Method for Identifying and Exploiting Dominance Relations

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNPSE,volume 7514)

Abstract

Many constraint problems exhibit dominance relations which can be exploited for dramatic reductions in search space. Dominance relations are a generalization of symmetry and conditional symmetry. However, unlike symmetry breaking which is relatively well studied, dominance breaking techniques are not very well understood and are not commonly applied. In this paper, we present formal definitions of dominance breaking, and a generic method for identifying and exploiting dominance relations via dominance breaking constraints. We also give a generic proof of the correctness and compatibility of symmetry breaking constraints, conditional symmetry breaking constraints and dominance breaking constraints.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. PSPLib - project scheduling problem library, http://129.187.106.231/psplib/ (accessed on March 1, 2012)

  2. Abdennadher, S., Schlenker, H.: Nurse scheduling using constraint logic programming. In: AAAI/IAAI, pp. 838–843 (1999)

    Google Scholar 

  3. Aldowaisan, T.A.: A new heuristic and dominance relations for no-wait flowshops with setups. Computers & OR 28(6), 563–584 (2001)

    CrossRef  MATH  Google Scholar 

  4. Brucker, P., Drexl, A., Möhring, R.H., Neumann, K., Pesch, E.: Resource-constrained project scheduling: Notation, classification, models, and methods. European Journal of Operational Research 112(1), 3–41 (1999)

    CrossRef  MATH  Google Scholar 

  5. Chu, G., de la Banda, M.G., Stuckey, P.J.: Automatically Exploiting Subproblem Equivalence in Constraint Programming. In: Lodi, A., Milano, M., Toth, P. (eds.) CPAIOR 2010. LNCS, vol. 6140, pp. 71–86. Springer, Heidelberg (2010)

    CrossRef  Google Scholar 

  6. Chu, G., Stuckey, P.J.: Minimizing the Maximum Number of Open Stacks by Customer Search. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 242–257. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  7. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predicates for search problems. In: Proceedings of the 5th International Conference on Principles of Knowledge Representation and Reasoning, pp. 148–159. Morgan Kaufmann (1996)

    Google Scholar 

  8. Fahle, T., Schamberger, S., Sellmann, M.: Symmetry Breaking. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 93–107. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  9. Feydy, T., Stuckey, P.J.: Lazy Clause Generation Reengineered. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 352–366. Springer, Heidelberg (2009)

    CrossRef  Google Scholar 

  10. Flener, P., Pearson, J., Sellmann, M., Van Hentenryck, P.: Static and Dynamic Structural Symmetry Breaking. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 695–699. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  11. Focacci, F., Milano, M.: Global Cut Framework for Removing Symmetries. In: Walsh, T. (ed.) CP 2001. LNCS, vol. 2239, pp. 77–92. Springer, Heidelberg (2001)

    CrossRef  Google Scholar 

  12. de la Banda, M.G., Stuckey, P.J., Chu, G.: Solving talent scheduling with dynamic programming. INFORMS Journal on Computing 23(1), 120–137 (2011)

    CrossRef  MathSciNet  MATH  Google Scholar 

  13. Gargani, A., Refalo, P.: An Efficient Model and Strategy for the Steel Mill Slab Design Problem. In: Bessière, C. (ed.) CP 2007. LNCS, vol. 4741, pp. 77–89. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  14. Gent, I.P., Kelsey, T., Linton, S.A., McDonald, I., Miguel, I., Smith, B.M.: Conditional Symmetry Breaking. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 256–270. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  15. Gent, I.P., Smith, B.M.: Symmetry breaking in constraint programming. In: Horn, W. (ed.) Proceedings of the 14th European Conference on Artificial Intelligence, pp. 599–603. IOS Press (2000)

    Google Scholar 

  16. Getoor, L., Ottosson, G., Fromherz, M.P.J., Carlson, B.: Effective redundant constraints for online scheduling. In: AAAI/IAAI, pp. 302–307 (1997)

    Google Scholar 

  17. Hoffman, K.L., Padberg, M.: Improving LP-representations of zero-one linear programs for branch-and-cut. INFORMS Journal on Computing 3(2), 121–134 (1991)

    CrossRef  MATH  Google Scholar 

  18. Korf, R.E.: Optimal rectangle packing: New results. In: Proceedings of the Fourteenth International Conference on Automated Planning and Scheduling (ICAPS 2004), pp. 142–149 (2004)

    Google Scholar 

  19. Martin, R.: The Challenge of Exploiting Weak Symmetries. In: Hnich, B., Carlsson, M., Fages, F., Rossi, F. (eds.) CSCLP 2005. LNCS (LNAI), vol. 3978, pp. 149–163. Springer, Heidelberg (2006)

    CrossRef  Google Scholar 

  20. Mears, C., de la Banda, M.G., Wallace, M.: On implementing symmetry detection. Constraints 14(4), 443–477 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  21. Miller, H.E., Pierskalla, W.P., Rath, G.J.: Nurse scheduling using mathematical programming. Operations Research, 857–870 (1976)

    Google Scholar 

  22. Monette, J.N., Schaus, P., Zampelli, S., Deville, Y., Dupont, P.: A CP approach to the balanced academic curriculum problem. In: Seventh International Workshop on Symmetry and Constraint Satisfaction Problems, vol. 7 (2007), http://www.info.ucl.ac.be/~yde/Papers/SymCon2007_bacp.pdf

  23. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation via lazy clause generation. Constraints 14(3), 357–391 (2009)

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. Prestwich, S., Beck, J.C.: Exploiting dominance in three symmetric problems. In: Fourth International Workshop on Symmetry and Constraint Satisfaction Problems, pp. 63–70 (2004), http://zeynep.web.cs.unibo.it/SymCon04/SymCon04.pdf

  25. Proll, L.G., Smith, B.: Integer linear programming and constraint programming approaches to a template design problem. INFORMS Journal on Computing 10(3), 265–275 (1998)

    CrossRef  MathSciNet  MATH  Google Scholar 

  26. Puget, J.-F.: Automatic Detection of Variable and Value Symmetries. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 475–489. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  27. Yu, C.F., Wah, B.W.: Learning dominance relations in combinatorial search problems. IEEE Trans. Software Eng. 14(8), 1155–1175 (1988)

    CrossRef  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chu, G., Stuckey, P.J. (2012). A Generic Method for Identifying and Exploiting Dominance Relations. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)