Skip to main content

Interactive Algorithm for Multi-Objective Constraint Optimization

  • Conference paper
Principles and Practice of Constraint Programming (CP 2012)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 7514))

Abstract

Many real world problems involve multiple criteria that should be considered separately and optimized simultaneously. A Multi-Objective Constraint Optimization Problem (MO-COP) is the extension of a mono-objective Constraint Optimization Problem (COP). In a MO-COP, it is required to provide the most preferred solution for a user among many optimal solutions. In this paper, we develop a novel Interactive Algorithm for MO-COP (MO-IA). The characteristics of this algorithm are as follows: (i) it can guarantee to find a Pareto solution, (ii) it narrows a region, in which Pareto front may exist, gradually, (iii) it is based on a pseudo-tree, which is a widely used graph structure in COP algorithms, and (iv) the complexity of this algorithm is determined by the induced width of problem instances. In the evaluations, we use an existing model for representing a utility function, and show empirically the effectiveness of our algorithm. Furthermore, we propose an extension of MO-IA, which can provide the more detailed information for Pareto front.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bringmann, K., Friedrich, T., Neumann, F., Wagner, M.: Approximation-guided evolutionary multi-objective optimization. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 1198–1203 (2011)

    Google Scholar 

  2. Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal on Optimization 8(3), 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–197 (2002)

    Article  Google Scholar 

  4. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)

    Google Scholar 

  5. Erfani, T., Utyuzhnikov, S.V.: Directed search domain: a method for even generation of the Pareto frontier in multiobjective optimization. Engineering Optimization 43(5), 467–484 (2010)

    Article  MathSciNet  Google Scholar 

  6. Fave, F.M.D., Stranders, R., Rogers, A., Jennings, N.R.: Bounded decentralised coordination over multiple objectives. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, pp. 371–378 (2011)

    Google Scholar 

  7. Junker, U.: Preference-based inconsistency proving: When the failure of the best is sufficient. In: Proceedings of the 17th European Conference on Artificial Intelligence, pp. 118–122 (2006)

    Google Scholar 

  8. Marinescu, R.: Exploiting Problem Decomposition in Multi-objective Constraint Optimization. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 592–607. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Marinescu, R.: Best-first vs. depth-first and/or search for multi-objective constraint optimization. In: Proceedings of the 22nd IEEE International Conference on Tools with Artificial Intelligence, pp. 439–446 (2010)

    Google Scholar 

  10. Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford University Press (1995)

    Google Scholar 

  11. Messac, A., Mattson, C.: Generating well-distributed sets of Pareto points for engineering design using physical programming. Optimization and Engineering 3(4), 431–450 (2002)

    Article  MATH  Google Scholar 

  12. Messac, A., Puemi-sukam, C., Melachrinoudis, E.: Aggregate objective functions and Pareto frontiers: Required relationships and practical implications. Optimization and Engineering 1(2), 171–188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)

    MATH  Google Scholar 

  14. Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and optimal access of web sources. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, pp. 86–92 (2000)

    Google Scholar 

  15. Perny, P., Spanjaard, O.: Near admissible algorithms for multiobjective search. In: Proceedings of the 18th European Conference on Artificial Intelligence, pp. 490–494 (2008)

    Google Scholar 

  16. Rollon, E., Larrosa, J.: Bucket elimination for multiobjective optimization problems. Journal of Heuristics 12(4-5), 307–328 (2006)

    Article  MATH  Google Scholar 

  17. Rollon, E., Larrosa, J.: Multi-objective Russian doll search. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 249–254 (2007)

    Google Scholar 

  18. Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems: Hard and easy problems. In: Proceedings of the 14th International Joint Conference on Artificial Intelligence, pp. 631–639 (1995)

    Google Scholar 

  19. Stiglitz, J.E.: Economics. W.W.Norton & Company (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Okimoto, T., Joe, Y., Iwasaki, A., Matsui, T., Hirayama, K., Yokoo, M. (2012). Interactive Algorithm for Multi-Objective Constraint Optimization. In: Milano, M. (eds) Principles and Practice of Constraint Programming. CP 2012. Lecture Notes in Computer Science, vol 7514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33558-7_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33558-7_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33557-0

  • Online ISBN: 978-3-642-33558-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics