Skip to main content

Local vs Global Descriptors of Hippocampus Shape Evolution for Alzheimer’s Longitudinal Population Analysis

  • Conference paper
Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data (STIA 2012)

Abstract

In the context of Alzheimer’s disease (AD), state-of-the-art methods separating normal control (NC) from AD patients or CN from progressive MCI (mild cognitive impairment patients converting to AD) achieve decent classification rates. However, they all perform poorly at separating stable MCI (MCI patients not converting to AD) and progressive MCI. Instead of using features extracted from a single temporal point, we address this problem using descriptors of the hippocampus evolutions between two time points. To encode the transformation, we use the framework of large deformations by diffeomorphisms that provides geodesic evolutions. To perform statistics on those local features in a common coordinate system, we introduce an extension of the Kärcher mean algorithm that defines the template modulo rigid registrations, and an initialization criterion that provides a final template leading to better matching with the patients. Finally, as local descriptors transported to this template do not directly perform as well as global descriptors (e.g. volume difference), we propose a novel strategy combining the use of initial momentum from geodesic shooting, extended Kärcher algorithm, density transport and integration on a hippocampus subregion, which is able to outperform global descriptors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack, C.R., Ashburner, J., Frackowiak, R.S.J.: Automatic classification of MR scans in Alzheimer’s disease. Brain 131(3), 681–689 (2008)

    Article  Google Scholar 

  2. Vemuri, P., Gunter, J.L., Senjem, M.L., Whitwell, J.L., Kantarci, K., Knopman, D.S., Boeve, B.F., Petersen, R.C., Jack Jr., C.R.: Alzheimer’s disease diagnosis in individual subjects using structural MR images: Validation studies. NeuroImage 39(3), 1186–1197 (2008)

    Article  Google Scholar 

  3. Lao, Z., Shen, D., Xue, Z., Karacali, B., Resnick, S.M., Davatzikos, C.: Morphological classification of brains via high-dimensional shape transformations and machine learning methods. NeuroImage 21(1), 46–57 (2004)

    Article  Google Scholar 

  4. Magnin, B., Mesrob, L., Kinkingnéhun, S., Pélégrini-Issac, M., Colliot, O., Sarazin, M., Dubois, B., Lehéricy, S., Benali, H.: Support vector machine-based classification of Alzheimer’s disease from whole-brain anatomical MRI. Neuroradiology 51(2), 73–83 (2009)

    Article  Google Scholar 

  5. Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C.: Compare: classification of morphological patterns using ADaptive regional elements. IEEE Trans. Med. Imaging 26(1), 93–105 (2007)

    Article  Google Scholar 

  6. Fan, Y., Batmanghelich, N., Clark, C.M., Davatzikos, C.: Alzheimer’s Disease Neuroimaging Initiative: Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage 39(4), 1731–1743 (2008)

    Article  Google Scholar 

  7. Fan, Y., Resnick, S.M., Wu, X., Davatzikos, C.: Structural and functional biomarkers of prodromal Alzheimer’s disease: a high-dimensional pattern classification study. NeuroImage 41(2), 277–285 (2008)

    Article  Google Scholar 

  8. Querbes, O., Aubry, F., Pariente, J., Lotterie, J.A., Démonet, J.F., Duret, V., Puel, M., Berry, I., Fort, J.C., Celsis, P., Initiative, A.D.N.: Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain 132, 2036–2047 (2009)

    Article  Google Scholar 

  9. Desikan, R.S., Cabral, H.J., Hess, C.P., Dillon, W.P., Glastonbury, C.M., Weiner, M.W., Schmansky, N.J., Greve, D.N., Salat, D.H., Buckner, R.L., Fischl, B., Initiative, A.D.N.: Automated MRI measures identify individuals with mild cognitive impairment and Alzheimer’s disease. Brain 132(pt. 8), 2048–2057 (2009)

    Article  Google Scholar 

  10. Chupin, M., Mukuna-Bantumbakulu, A.R., Hasboun, D., Bardinet, E., Baillet, S., Kinkingnéhun, S., Lemieux, L., Dubois, B., Garnero, L.: Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer’s disease. NeuroImage 34(3), 996–1019 (2007)

    Article  Google Scholar 

  11. Chupin, M., Gérardin, E., Cuingnet, R., Boutet, C., Lemieux, L., Lehéricy, S., Benali, H., Garnero, L., Colliot, O., Initiative, A.D.N.: Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 19(6), 579–587 (2009)

    Article  Google Scholar 

  12. Gerardin, E., Chételat, G., Chupin, M., Cuingnet, R., Desgranges, B., Kim, H.S., Niethammer, M., Dubois, B., Lehéricy, S., Garnero, L., Eustache, F., Colliot, O., Initiative, A.D.N.: Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. NeuroImage 47(4), 1476–1486 (2009)

    Article  Google Scholar 

  13. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehéricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. NeuroImage 56(2), 766–781 (2011)

    Article  Google Scholar 

  14. Beg, M.F., Miller, M.I., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vision 61(2), 139–157 (2005)

    Article  Google Scholar 

  15. Vaillant, M., Miller, M.I., Trouvé, A., Younes, L.: Statistics on diffeomorphisms via tangent space representations. NeuroImage 23(S1), S161–S169 (2004)

    Article  Google Scholar 

  16. Wang, L., Beg, F., Ratnanather, T., Ceritoglu, C., Younes, L., Morris, J.C., Csernansky, J.G., Miller, M.I.: Large deformation diffeomorphism and momentum based hippocampal shape discrimination in dementia of the alzheimer type. IEEE Trans. Med. Imaging 26(4), 462–470 (2007)

    Article  Google Scholar 

  17. Singh, N., Fletcher, P.T., Preston, J.S., Ha, L., King, R., Marron, J.S., Wiener, M., Joshi, S.: Multivariate Statistical Analysis of Deformation Momenta Relating Anatomical Shape to Neuropsychological Measures. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part III. LNCS, vol. 6363, pp. 529–537. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Ma, J., Miller, M.I., Younes, L.: A bayesian generative model for surface template estimation. Journal of Biomedical Imaging 2010, 16:1–16:14 (2010)

    Article  Google Scholar 

  19. Fletcher, P.T., Lu, C., Pizer, M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Transactions Medical Imaging, 995–1005 (2004)

    Google Scholar 

  20. Vialard, F.X., Risser, L., Rueckert, D., Cotter, C.J.: Diffeomorphic 3D image registration via geodesic shooting using an efficient ADjoint calculation. Int. J. Comput. Vision 97(2), 229–241 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Vialard, F.X., Rueckert, D., Holm, D., Risser, L.: Diffeomorphic Atlas Estimation using Kärcher Mean and Geodesic Shooting on Volumetric Images. In: Medical Image Understanding and Analysis, MIUA 2011, Londres, Royaume-Uni (2011)

    Google Scholar 

  22. Younes, L.: Jacobi fields in groups of diffeomorphisms and applications. Quart. Appl. Math. 65, 113–134 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Qiu, A., Younes, L., Miller, M.I., Csernansky, J.G.: Parallel transport in diffeomorphisms distinguishes the time-dependent pattern of hippocampal surface deformation due to healthy aging and the dementia of the Alzheimer’s type. NeuroImage 40, 68–76 (2008)

    Article  Google Scholar 

  24. Lorenzi, M., Pennec, X.: Geodesics, parallel transport & one-parameter subgroups for diffeomorphic image registration. In: MFCA - Workshop MICCAI (2011)

    Google Scholar 

  25. Risser, L., Vialard, F.X., Wolz, R., Murgasova, M., Holm, D.D., Rueckert, D.: Simultaneous multiscale registration using large deformation diffeomorphic metric mapping. IEEE Trans. Med. Imaging (2011)

    Google Scholar 

  26. Ourselin, S., Roche, A., Subsol, G., Pennec, X., Ayache, N.: Reconstructing a 3D structure from serial histological sections. Image and Vision Computing 19(1-2), 25–31 (2001)

    Article  Google Scholar 

  27. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)

    Article  Google Scholar 

  28. Holm, D.D.: Geometric Mechanics and Symmetry: From Finite to Infinite Dimensions. Oxford Texts in Applied and Engineering Mathematics, vol. 12 (2009)

    Google Scholar 

  29. Mueller, S.G., Weiner, M.W., Thal, L.J., Petersen, R.C., Jack, C., Jagust, W., Trojanowski, J.Q., Toga, A.W., Beckett, L.: The Alzheimer’s Disease Neuroimaging Initiative. Neuroimaging Clinics of North America 15(4), 869–877 (2005); Alzheimer’s Disease: 100 Years of Progress

    Article  Google Scholar 

  30. Niethammer, M., Huang, Y., Vialard, F.-X.: Geodesic Regression for Image Time-Series. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part II. LNCS, vol. 6892, pp. 655–662. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  31. Trouvé, A., Vialard, F.X.: Shape splines and stochastic shape evolutions: A second order point of view. Quarterly of Applied Mathematics (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fiot, JB., Risser, L., Cohen, L.D., Fripp, J., Vialard, FX. (2012). Local vs Global Descriptors of Hippocampus Shape Evolution for Alzheimer’s Longitudinal Population Analysis. In: Durrleman, S., Fletcher, T., Gerig, G., Niethammer, M. (eds) Spatio-temporal Image Analysis for Longitudinal and Time-Series Image Data. STIA 2012. Lecture Notes in Computer Science, vol 7570. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33555-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33555-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33554-9

  • Online ISBN: 978-3-642-33555-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics