Information-Gathering Events in Story Plots

  • Fabio A. Guilherme da Silva
  • Antonio L. Furtado
  • Angelo E. M. Ciarlini
  • Cesar Tadeu Pozzer
  • Bruno Feijó
  • Edirlei Soares de Lima
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7522)

Abstract

Story plots must contain, besides physical action events, a minimal set of information-gathering events, whereby the various characters can form their beliefs on the facts of the mini-world in which the narrative takes place. In this paper, we present an approach to model such events within a plan-based storytelling context. Three kinds of such events are considered here, involving, respectively, inter-character communication, perception and reasoning. Multiple discordant beliefs about the same fact are allowed, making necessary the introduction of higher-level facilities to rank them and to exclude those that violate certain constraints. Other higher-level facilities are also available for pattern-matching against typical-plan libraries or previously composed plots. A prototype logic programming implementation is fully operational. A simple example is used throughout the presentation.

Keywords

Plot Composition Communicative Acts Perception Deduction Abduction Plan Recognition Plan Generation Logic Programming 

References

  1. 1.
    Fikes, R.E., Nilsson, N.J.: STRIPS: A new approach to the application of theorem proving to problem solving. Artificial Intelligence 2(3-4) (1971)Google Scholar
  2. 2.
    Camanho, M.M., Ciarlini, A.E.M., Furtado, A.L., Pozzer, C.T., Feijó, B.: Conciliating coherence and high responsiveness in interactive storytelling. In: Proc. of the 3rd International Conference on Digital Interactive Media in Entertainment and Arts, pp. 427–434 (2008)Google Scholar
  3. 3.
    Silva, F.A.G., Ciarlini, A.E.M., Siqueira, S.W.M.: Nondeterministic Planning for Generating Interactive Plots. In: Proc. Ibero-American Conference on Artificial Intelligence, Bahía Blanca, Argentina, November 1-5, vol. 162 (2010)Google Scholar
  4. 4.
    Batini, C., Ceri, S., Navathe, S.: Conceptual Design – an Entity-Relationship Approach. Benjamin Cummings (1992)Google Scholar
  5. 5.
    Lloyd, W.: Foundations of Logic Programming. Springer (1987)Google Scholar
  6. 6.
    Sadek, M.D.: Logical task modelling for man-machine dialogue. In: Proceedings of the Eighth AAAI Conference, Boston, MA (1990)Google Scholar
  7. 7.
    FIPA Review of FIPA Specifications (2006), http://www.fipa.org/subgroups/ROFS-SG-docs/ROFS-Doc.pdf
  8. 8.
    Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and Semantics, Speech Acts, vol. 3. Academic Press, New York (1975)Google Scholar
  9. 9.
    Dalton, J.: Extraordinary facts relating to the vision of colours: with observations. Memoirs of the Literary and Philosophical Society of Manchester 5, 28–45 (1798)Google Scholar
  10. 10.
    Barthes, R.: The Theory of the Text. In: Young, R. (ed.) Untying the Text: A Post-Structural Reader, pp. 31–47. Routledge, Boston (1981)Google Scholar
  11. 11.
    Mateas, M., Stern, A.: Structuring content in the Facade interactive drama architecture. In: Proc. Artificial Intelligence and Interactive Digital Entertainment Conference, AIIDE (2005)Google Scholar
  12. 12.
    Cavazza, M., Charles, F., Mead, S.: Character-based interactive storytelling. IEEE Intelligent Systems, Special Issue on AI in Interactive Entertainment 17(4), 17–24 (2002)MATHGoogle Scholar
  13. 13.
    Young, R.: An overview of the mimesis architecture: Integrating narrative control into a gaming environment. In: Working Notes of the AAAI Spring Symposium on Artificial Intelligence and Interactive Entertainment, pp. 78–81. AAAI Press, Stanford (2001)Google Scholar
  14. 14.
    Riedl, M., Young, R.M.: From Linear Story Generation to Branching Story Graphs. IEEE Computer Graphics and Applications 26(3), 23–31 (2006)CrossRefGoogle Scholar
  15. 15.
    Erol, K., Hendler, J., Nau, D.S.: UMCP: A sound and complete procedure for hierarchical task-network planning. In: Proceedings of the International Conference on AI Planning Systems (AIPS), pp. 249–254 (1994)Google Scholar
  16. 16.
    Rao, A.S., Georgeff, M.P.: BDI-agents: From Theory to Practice. In: Proceedings of the First International Conference on Multiagent Systems (ICMAS 1995), San Francisco (1995)Google Scholar
  17. 17.
    Bratman, M.E.: Intention, Plans, and Practical Reason. CSLI Publications (1999)Google Scholar
  18. 18.
    Dastani, M., van der Torre, L.: An Extension of BDICTL with Functional Dependencies and Components. In: Baaz, M., Voronkov, A. (eds.) LPAR 2002. LNCS (LNAI), vol. 2514. Springer, Heidelberg (2002)Google Scholar
  19. 19.
    Wooldridge, M.: Reasoning About Rational Agents. The MIT Press (2000) ISBN 0-262-23213-8Google Scholar
  20. 20.
    Carberry, S., Lambert, L.: A Process Model for Recognizing Communicative Acts and Modeling Negotiation Subdialogues. Computational Linguistics 25(1), 1–53 (1999)Google Scholar
  21. 21.
    Finin, T., Weber, J., Wiederhold, G., Gensereth, M., Fritzzon, R., McKay, D., McGuire, J., Pelavin, R., Shapiro, S., Beck, C. (eds.): DRAFT Specification of the KQML Agent-Communication Language. PostScript (June 15, 1993), http://www.cs.umbc.edu/KQML/kqmlspec.ps
  22. 22.
    Searle, J.R.: Speech Acts An Essay in the Philosophy of Language. Cambridge University Press, Cambridge (1969)CrossRefGoogle Scholar
  23. 23.
    Winograd, T., Flores, F.: Understanding Computers and Cognition: A New Foundation for Design. Ablex Publishing Corp., Norwood (1986)MATHGoogle Scholar
  24. 24.
    Reiter, E., Dale, R.: Building Natural Language Generation Systems. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  25. 25.
    Reiter, E., Dale, R.: Building applied natural language generation systems. Nat. Lang. Eng. 3, 57–87 (1997)CrossRefGoogle Scholar
  26. 26.
    Busemann, S., Horacek, H.: A flexible shallow approach to text generation. In: Proceedings of the Ninth International Workshop on Natural Language Generation, Niagara-on-the-Lake, Ontario, Canada, pp. 238–247 (1998)Google Scholar
  27. 27.
    van Deemter, K., Krahmer, E., Theune, M.: Real versus Template-Based Natural Language Generation: A False Opposition? Comput. Linguist. 31, 15–24 (2005)CrossRefGoogle Scholar
  28. 28.
    Reiter, E.: NLG vs. Templates. In: CoRR. cmp-lg/9504013 (1995)Google Scholar
  29. 29.
    McRoy, S.W., Channarukul, S., Ali, S.S.: An augmented template-based approach to text realization. Nat. Lang. Eng. 9, 381–420 (2003)CrossRefGoogle Scholar
  30. 30.
    Stenzhorn, H.: XtraGen: A Natural Language Generation System Using XML- And Java-Technologies. In: Proceedings of the 2nd Workshop on NLP and XML, vol. 17, pp. 1–8 (2002)Google Scholar
  31. 31.
    Piwek, P.: A flexible pragmatics-driven language generator for animated agents. In: Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics, vol. 2, pp. 151–154 (2003)Google Scholar
  32. 32.
    Gervás, P., Díaz-Agudo, B., Peinado, F., Hervás, R.: Story plot generation based on CBR. Knowledge-Based Systems 18(4-5), 235–242 (2005)CrossRefGoogle Scholar
  33. 33.
    Szilas, N.: A Computational Model of an Intelligent Narrator for Interactive Narratives. Applied Artificial Intelligence 21(8), 753–801 (2007)CrossRefGoogle Scholar
  34. 34.
    Montfort, N.: Generating narrative variation in interactive fiction. PhD dissertation, Computer and Information Science - University of Pennsylvania (2007)Google Scholar
  35. 35.
    Callaway, C.B., Lester, J.C.: Narrative prose generation. Artificial Intelligence 139(2), 213–252 (2002)CrossRefGoogle Scholar
  36. 36.
    Todorov, T.: The Poetics of Prose. Cornell University Press (1977)Google Scholar
  37. 37.
    Brave, S., Nass, C.: Emotion in Human-Computer Interaction. In: Sears, A., Jacko, J. (eds.) The Human-Computer Interaction Handbook, pp. 77–92 (2008)Google Scholar
  38. 38.
    Loewenstein, G., Lerner, J.S.: The role of affect in decision making. In: Davidson, R.J., Scherer, K.R., Goldsmith, H.H. (eds.) Handbook of Affective Sciences, pp. 619–642. Oxford University Press (2003)Google Scholar
  39. 39.
    McCrae, R.R., Costa, P.T.: Validation of a five-factor model of personality across instruments and observers. J. Pers. Soc. Psychol. 52, 81–90 (1987)CrossRefGoogle Scholar
  40. 40.
    Goldberg, L.R.: The Development of Markers for the Big-Five Factor Structure. Psychological Assessment 4(1), 26–42 (1992)CrossRefGoogle Scholar
  41. 41.
    O’Rorke, P., Ortony, A.: Explaining Emotions. Cognitive Science 18(2), 283–323 (1994)CrossRefGoogle Scholar
  42. 42.
    Ortony, A.: On making believable emotional agents believable. In: Trappl, R., Petta, P., Payr, S. (eds.) Emotions in Humans and Artifacts, pp. 189–211. The MIT Press (2003)Google Scholar
  43. 43.
    Willensky, R.: Planning and Understanding - a Computational Approach to Human Reasoning. Addison-Wesley (1983)Google Scholar
  44. 44.
    Barbosa, S.D.J., Furtado, A.L., Casanova, M.A.C.: A Decision-making Process for Digital Storytelling. In: Proc. IX Symposium on Computer Games and Digital Entertainment - Track: Computing (2010)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Fabio A. Guilherme da Silva
    • 1
  • Antonio L. Furtado
    • 1
  • Angelo E. M. Ciarlini
    • 2
  • Cesar Tadeu Pozzer
    • 3
  • Bruno Feijó
    • 1
  • Edirlei Soares de Lima
    • 1
  1. 1.Depto. de InformáticaPUC-RioBrasil
  2. 2.Depto. de Informática AplicadaUNIRIOBrasil
  3. 3.Departamento de Eletrônica e ComputaçãoUFSMSanta MariaBrasil

Personalised recommendations