Self-stabilizing Distributed Data Fusion

  • Bertrand Ducourthial
  • Véronique Cherfaoui
  • Thierry Denoeux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7596)


The Theory of Belief Functions is a formal framework for reasoning with uncertainty that is well suited for representing unreliable information and weak states of knowledge. In information fusion applications, it is mainly used in a centralized way, by gathering the data on a single node before computation.

In this paper, a distributed algorithm is proposed to compute the neighborhood confidence of each node, by combining all the data of its neighbors using an adaptation of the well known Dempster’s rule. Moreover, a distributed algorithm is proposed to compute the distributed confidence of each node, by combining all the data of the network using an adaptation of the cautious operator. Then, it is shown that when adding a discounting to the cautious operator, it becomes an r-operator and the distributed algorithm becomes self-stabilizing. This means that it converges in finite time despite transient faults.

Using this approach, uncertain and imprecise distributed data can be processed over a network without gathering them on a central node, even on a network subject to failures, saving important computing and networking resources. Moreover, our algorithms converge in finite time whatever is the initialization of the system and for any unknown topology.

This contribution leads to new interesting distributed applications dealing with uncertain and imprecise data. This is illustrated in the paper: an application for sensors networks is detailed all along the paper to ease the understanding of the formal approach and to show its interest.


Mass Function Belief Function Vehicular Network Transient Fault Time Expiration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing systems. Journal of the ACM 1(42), 124–142 (1995)CrossRefGoogle Scholar
  2. 2.
    Cherfaoui, V., Denoeux, T., Cherfi, Z.-L.: Confidence management in Vehicular Network. In: Vehicular Networks: Techniques, Standards, and Applications, pp. 357–378, CRC Press (2009) ISBN: 9781420085716Google Scholar
  3. 3.
    Cherfaoui, V., Denoeux, T., Cherfi, Z.L.: Distributed data fusion: application to confidence management in vehicular networks. In: Proceedings of the 11th International Conference on Information Fusion (FUSION 2008), Germany (2008)Google Scholar
  4. 4.
    Delaët, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators revisited. Journal of Aerospace Computing, Information, and Com. (2006)Google Scholar
  5. 5.
    Dempster, A.P.: A generalization of bayesian inference. Journal of the Royal Statistical Society 30, 205–247 (1968)MathSciNetGoogle Scholar
  6. 6.
    Denœux, T.: Conjunctive and disjunctive combination of belief functions induced by non distinct bodies of evidence. Artificial Intelligence 172, 234–264 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dieudonné, Y., Ducourthial, B., Senouci, S.-M.: Design and experimentation of a self-stabilizing data collection protocol for vehicular ad-hoc networks. In: IEEE Intelligent Vehicle Symposium 2012, Madrid (June 2012)Google Scholar
  8. 8.
    Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun. ACM 17(11), 643–644 (1974)zbMATHCrossRefGoogle Scholar
  9. 9.
    Dolev, S.: Self-Stabilization. MIT Press (2000)Google Scholar
  10. 10.
    Dubois, D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Computer intelligence 4, 244–264 (1988)CrossRefGoogle Scholar
  11. 11.
    Dubois, S.: Tolerating Transient, Permanent, and Intermittent Failures. PhD thesis, Université Pierre et Marie Curie, Paris, France (2011)Google Scholar
  12. 12.
    Ducourthial, B.: r-Semi-Groups: A Generic Approach for Designing Stabilizing Silent Tasks. In: Masuzawa, T., Tixeuil, S. (eds.) SSS 2007. LNCS, vol. 4838, pp. 281–295. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Ducourthial, B., Tixeuil, S.: Self-stabilization with path algebra. Theor. Comput. Sci. 293(1), 219–236 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators. Distributed Computing 14(3), 147–162 (2001)CrossRefGoogle Scholar
  15. 15.
    Gasparri, A., Fiorini, F., Di Rocco, M., Panzieri, S.: A networked transferable belief model approach for distributed data aggregation. IEEE Transactions on Systems, Man, and Cybernetics, Part B (99) (2011)Google Scholar
  16. 16.
    Hall, D.L., Llinas, J.: Handbook of Multisensor Data Fusion. CRC Press (2001)Google Scholar
  17. 17.
    Segall, A.: Distributed network protocols. IEEE Trans. Inf. Theory 29(1), 23–34 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Shafer, G.: A mathematical theory of evidence. Princeton, N.J. (1976)zbMATHGoogle Scholar
  19. 19.
    Smets, P.: The combination of evidence in the Ttransferable Belief Model. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5), 447–458 (1990)CrossRefGoogle Scholar
  20. 20.
    Smets, P.: The canonical decomposition of a weighted belief. In: Int. Joint Conf. on Artificial Intelligence, pp. 1896–1901. Morgan Kaufmann, San Mateo (1995)Google Scholar
  21. 21.
    Smets, P.: Data fusion in the transferable belief model. In: Proceedings of. 3rd Intern. Conf. Information Fusion, Paris, France (2000)Google Scholar
  22. 22.
    Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. Int. Journal of Approximate Reasoning 38, 133–147 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Smets, P., Kennes, R.: The transferable belief model. Artificial Intelligence 66, 191–234 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Tel, G.: Topics in Distributed Algorithms. Cambridge International Series on Parallel Computation, vol. 1. Cambridge University Press (1991)Google Scholar
  25. 25.
    Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press (1994)Google Scholar
  26. 26.
    El Zoghby, N., Cherfaoui, V., Ducourthial, B., Denœux, T.: Distributed Data Fusion for Detecting Sybil Attacks in VANETs. In: Denœux, T., Masson, M.-H. (eds.) Belief Functions: Theory & Appl. AISC, vol. 164, pp. 351–358. Springer, Heidelberg (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Bertrand Ducourthial
    • 1
  • Véronique Cherfaoui
    • 1
  • Thierry Denoeux
    • 1
  1. 1.Lab. Heudiasyc UMR CNRS-UTC 7253Université de Technologie de CompiègneFrance

Personalised recommendations