Abstract
In this paper, we study the effectiveness of the concurrent utilization of spatial, angular, and radiometric (SAR) information for denoising diffusion-weighted data. SAR filtering smooths diffusion-weighted images while at the same time preserves edges by means of nonlinear combination of nearby and similar signal values. The method is noniterative, local, and simple. It combines diffusion signals based on both their spatio-angular closeness and their radiometric similarity, with greater preference given to nearby and similar values. Our results suggest that SAR filtering reveals structures that are concealed by noise and produces anisotropy maps with markedly improved quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision (1998)
Smith, S.M., Brady, J.M.: SUSAN - a new approach to low level image processing. International Journal of Computer Vision 23(1) (1997)
Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4, 490–530 (2005)
Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., GarcÃa-MartÃ, G., MartÃ-BonmatÃ, L., Robles, M.: MRI denoising using non-local means. Medical Image Analysis 12(4), 514–523 (2008)
Descoteaux, M., Wiest-Daesslé, N., Prima, S., Barillot, C., Deriche, R.: Impact of Rician Adapted Non-Local Means Filtering on HARDI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 122–130. Springer, Heidelberg (2008)
Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S.P., Barillot, C.: Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. In: 11 (ed.) Medical Image Computing and Computer Assisted Intervention, Part 2, pp. 171–179 (2008)
Nowak, R.D.: Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Transactions on Image Processing 8(10), 1408–1419 (1999)
Watson, G.: Equatorial distributions on a sphere. Biometrika 52, 193–201 (1965)
Schwartzman, A., Dougherty, R.F., Taylor, J.E.: False discovery rate analysis of brain diffusion direction maps. Annals of Applied Statistics 2(1), 153–175 (2008)
Basu, S., Fletcher, T., Whitaker, R.T.: Rician Noise Removal in Diffusion Tensor MRI. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 117–125. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yap, PT., Shen, D. (2012). DWI Denoising Using Spatial, Angular, and Radiometric Filtering. In: Yap, PT., Liu, T., Shen, D., Westin, CF., Shen, L. (eds) Multimodal Brain Image Analysis. MBIA 2012. Lecture Notes in Computer Science, vol 7509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33530-3_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-33530-3_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33529-7
Online ISBN: 978-3-642-33530-3
eBook Packages: Computer ScienceComputer Science (R0)