Skip to main content

DWI Denoising Using Spatial, Angular, and Radiometric Filtering

  • Conference paper
Multimodal Brain Image Analysis (MBIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7509))

Included in the following conference series:

  • 1265 Accesses

Abstract

In this paper, we study the effectiveness of the concurrent utilization of spatial, angular, and radiometric (SAR) information for denoising diffusion-weighted data. SAR filtering smooths diffusion-weighted images while at the same time preserves edges by means of nonlinear combination of nearby and similar signal values. The method is noniterative, local, and simple. It combines diffusion signals based on both their spatio-angular closeness and their radiometric similarity, with greater preference given to nearby and similar values. Our results suggest that SAR filtering reveals structures that are concealed by noise and produces anisotropy maps with markedly improved quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: International Conference on Computer Vision (1998)

    Google Scholar 

  2. Smith, S.M., Brady, J.M.: SUSAN - a new approach to low level image processing. International Journal of Computer Vision 23(1) (1997)

    Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation 4, 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Manjón, J.V., Carbonell-Caballero, J., Lull, J.J., García-Martí, G., Martí-Bonmatí, L., Robles, M.: MRI denoising using non-local means. Medical Image Analysis 12(4), 514–523 (2008)

    Article  Google Scholar 

  5. Descoteaux, M., Wiest-Daesslé, N., Prima, S., Barillot, C., Deriche, R.: Impact of Rician Adapted Non-Local Means Filtering on HARDI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 122–130. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S.P., Barillot, C.: Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. In: 11 (ed.) Medical Image Computing and Computer Assisted Intervention, Part 2, pp. 171–179 (2008)

    Google Scholar 

  7. Nowak, R.D.: Wavelet-based Rician noise removal for magnetic resonance imaging. IEEE Transactions on Image Processing 8(10), 1408–1419 (1999)

    Article  Google Scholar 

  8. Watson, G.: Equatorial distributions on a sphere. Biometrika 52, 193–201 (1965)

    MathSciNet  Google Scholar 

  9. Schwartzman, A., Dougherty, R.F., Taylor, J.E.: False discovery rate analysis of brain diffusion direction maps. Annals of Applied Statistics 2(1), 153–175 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Basu, S., Fletcher, T., Whitaker, R.T.: Rician Noise Removal in Diffusion Tensor MRI. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 117–125. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yap, PT., Shen, D. (2012). DWI Denoising Using Spatial, Angular, and Radiometric Filtering. In: Yap, PT., Liu, T., Shen, D., Westin, CF., Shen, L. (eds) Multimodal Brain Image Analysis. MBIA 2012. Lecture Notes in Computer Science, vol 7509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33530-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33530-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33529-7

  • Online ISBN: 978-3-642-33530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics