Abstract
Accurate diagnosis of Alzheimer’s disease (AD), especially mild cognitive impairment (MCI), is critical for treatment of the disease. Many algorithms have been proposed to improve classification performance. While most existing methods focus on exploring different feature extraction and selection techniques, in this paper, we show that the pre-processing steps for MRI scans, i.e., registration and segmentation, significantly affect the classification performance. Specifically, we evaluate the classification performance given by a multi-atlas based multi-image segmentation (MABMIS) method, with respect to more conventional segmentation methods. By incorporating tree-based groupwise registration and iterative groupwise segmentation strategies, MABMIS attains more accurate and consistent segmentation results compared with the conventional methods that do not take into account the inherent distribution of images under segmentation. This increased segmentation accuracy will benefit classification by minimizing errors that are propagated to the subsequent analysis steps. Experimental results indicate that MABMIS achieves better performance when compared with the conventional methods in the following classification tasks using the ADNI dataset: AD vs. MCI (accuracy: 71.8%), AD vs. healthy control (HC) (89.1%), progressive MCI vs. HC (84.4%), and progressive MCI vs. stable MCI (70.0%). These results show that pre-processing the images accurately is critical for neuroimaging classification.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the global burden of Alzheimer’s disease. Alzheimer’s and Dementia 3, 186–191 (2007)
Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55, 856–867 (2011)
Jia, H., Yap, P.-T., Shen, D.: Iterative multi-atlas-based multi-image segmentation with tree-based registration. NeuroImage 59, 422–430 (2011)
Jia, H., Wu, G., Wang, Q., Shen, D.: ABSORB: Atlas building by self-organized registration and bundling. NeuroImage 51, 1057–1070 (2010)
Klein, S., van der Heide, U.A., Lips, I.M., van Vulpen, M., Staring, M., Pluim, J.P.W.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35, 1407–1417 (2008)
Langerak, T.R., van der Heide, U.A., Kotte, A.N.T.J., Viergever, M.A., van Vulpen, M., Pluim, J.P.W.: Label Fusion in Atlas-Based Segmentation Using a Selective and Iterative Method for Performance Level Estimation (SIMPLE). IEEE Transactions on Medical Imaging 29, 2000–2008 (2010)
Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage 46, 726–738 (2009)
Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., van Ginneken, B.: Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Cardiac and Aortic Segmentation in CT Scans. IEEE Transactions on Medical Imaging 28, 1000–1010 (2009)
Lötjönen, J.M.P., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49, 2352–2365 (2010)
Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K.L., Poldrack, R.A., Bilder, R.M., Toga, A.W.: Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage 39, 1064–1080 (2008)
Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging 17, 87–97 (1998)
Wang, Y., Nie, J., Yap, P.-T., Shi, F., Guo, L., Shen, D.: Robust Deformable-Surface-Based Skull-Stripping for Large-Scale Studies. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 635–642. Springer, Heidelberg (2011)
Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 20, 45–57 (2001)
Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in func-tional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl. 1), S208–S219 (2004)
Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Medical Image Analysis 5, 143–156 (2001)
Chang, C.-C., Lin, C.-J.: LIBSVM: a Library for Support Vector Machines (2001)
Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45, S61–S72 (2009)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2012 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wang, Y. et al. (2012). Groupwise Segmentation Improves Neuroimaging Classification Accuracy. In: Yap, PT., Liu, T., Shen, D., Westin, CF., Shen, L. (eds) Multimodal Brain Image Analysis. MBIA 2012. Lecture Notes in Computer Science, vol 7509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33530-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-642-33530-3_16
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-33529-7
Online ISBN: 978-3-642-33530-3
eBook Packages: Computer ScienceComputer Science (R0)