Skip to main content

Groupwise Segmentation Improves Neuroimaging Classification Accuracy

  • Conference paper
Multimodal Brain Image Analysis (MBIA 2012)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 7509))

Included in the following conference series:

Abstract

Accurate diagnosis of Alzheimer’s disease (AD), especially mild cognitive impairment (MCI), is critical for treatment of the disease. Many algorithms have been proposed to improve classification performance. While most existing methods focus on exploring different feature extraction and selection techniques, in this paper, we show that the pre-processing steps for MRI scans, i.e., registration and segmentation, significantly affect the classification performance. Specifically, we evaluate the classification performance given by a multi-atlas based multi-image segmentation (MABMIS) method, with respect to more conventional segmentation methods. By incorporating tree-based groupwise registration and iterative groupwise segmentation strategies, MABMIS attains more accurate and consistent segmentation results compared with the conventional methods that do not take into account the inherent distribution of images under segmentation. This increased segmentation accuracy will benefit classification by minimizing errors that are propagated to the subsequent analysis steps. Experimental results indicate that MABMIS achieves better performance when compared with the conventional methods in the following classification tasks using the ADNI dataset: AD vs. MCI (accuracy: 71.8%), AD vs. healthy control (HC) (89.1%), progressive MCI vs. HC (84.4%), and progressive MCI vs. stable MCI (70.0%). These results show that pre-processing the images accurately is critical for neuroimaging classification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 72.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., Arrighi, H.M.: Forecasting the global burden of Alzheimer’s disease. Alzheimer’s and Dementia 3, 186–191 (2007)

    Article  Google Scholar 

  2. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55, 856–867 (2011)

    Article  Google Scholar 

  3. Jia, H., Yap, P.-T., Shen, D.: Iterative multi-atlas-based multi-image segmentation with tree-based registration. NeuroImage 59, 422–430 (2011)

    Article  Google Scholar 

  4. Jia, H., Wu, G., Wang, Q., Shen, D.: ABSORB: Atlas building by self-organized registration and bundling. NeuroImage 51, 1057–1070 (2010)

    Article  Google Scholar 

  5. Klein, S., van der Heide, U.A., Lips, I.M., van Vulpen, M., Staring, M., Pluim, J.P.W.: Automatic segmentation of the prostate in 3D MR images by atlas matching using localized mutual information. Med. Phys. 35, 1407–1417 (2008)

    Article  Google Scholar 

  6. Langerak, T.R., van der Heide, U.A., Kotte, A.N.T.J., Viergever, M.A., van Vulpen, M., Pluim, J.P.W.: Label Fusion in Atlas-Based Segmentation Using a Selective and Iterative Method for Performance Level Estimation (SIMPLE). IEEE Transactions on Medical Imaging 29, 2000–2008 (2010)

    Article  Google Scholar 

  7. Aljabar, P., Heckemann, R.A., Hammers, A., Hajnal, J.V., Rueckert, D.: Multi-atlas based segmentation of brain images: Atlas selection and its effect on accuracy. NeuroImage 46, 726–738 (2009)

    Article  Google Scholar 

  8. Isgum, I., Staring, M., Rutten, A., Prokop, M., Viergever, M.A., van Ginneken, B.: Multi-Atlas-Based Segmentation With Local Decision Fusion—Application to Cardiac and Aortic Segmentation in CT Scans. IEEE Transactions on Medical Imaging 28, 1000–1010 (2009)

    Article  Google Scholar 

  9. Lötjönen, J.M.P., Wolz, R., Koikkalainen, J.R., Thurfjell, L., Waldemar, G., Soininen, H., Rueckert, D.: Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage 49, 2352–2365 (2010)

    Article  Google Scholar 

  10. Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K.L., Poldrack, R.A., Bilder, R.M., Toga, A.W.: Construction of a 3D probabilistic atlas of human cortical structures. NeuroImage 39, 1064–1080 (2008)

    Article  Google Scholar 

  11. Sled, J.G., Zijdenbos, A.P., Evans, A.C.: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging 17, 87–97 (1998)

    Article  Google Scholar 

  12. Wang, Y., Nie, J., Yap, P.-T., Shi, F., Guo, L., Shen, D.: Robust Deformable-Surface-Based Skull-Stripping for Large-Scale Studies. In: Fichtinger, G., Martel, A., Peters, T. (eds.) MICCAI 2011, Part III. LNCS, vol. 6893, pp. 635–642. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging 20, 45–57 (2001)

    Article  Google Scholar 

  14. Smith, S.M., Jenkinson, M., Woolrich, M.W., Beckmann, C.F., Behrens, T.E.J., Johansen-Berg, H., Bannister, P.R., De Luca, M., Drobnjak, I., Flitney, D.E., Niazy, R.K., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J.M., Matthews, P.M.: Advances in func-tional and structural MR image analysis and implementation as FSL. NeuroImage 23(Suppl. 1), S208–S219 (2004)

    Google Scholar 

  15. Jenkinson, M., Smith, S.: A global optimisation method for robust affine registration of brain images. Medical Image Analysis 5, 143–156 (2001)

    Article  Google Scholar 

  16. Chang, C.-C., Lin, C.-J.: LIBSVM: a Library for Support Vector Machines (2001)

    Google Scholar 

  17. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45, S61–S72 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, Y. et al. (2012). Groupwise Segmentation Improves Neuroimaging Classification Accuracy. In: Yap, PT., Liu, T., Shen, D., Westin, CF., Shen, L. (eds) Multimodal Brain Image Analysis. MBIA 2012. Lecture Notes in Computer Science, vol 7509. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33530-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33530-3_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33529-7

  • Online ISBN: 978-3-642-33530-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics