Skip to main content

Abstract

In late 1990s, driven by the needs of minimizing manufacturing and operational costs in satellites, a revolutionary concept — Multifunctional structures (MFS) — was developed, which combines electronic components (multi-chip modules, or MCMs) and signal and power distribution cabling within a load bearing structure with embedded thermal control. This design concept dramatically changed the design approach for space systems, and in addition, led to a paradigm shift in the design methodology of the structures and control community[1∼4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Das A, Obal M W. Revolutionary satellite structural systems technology: A vision for the future. Aerospace Conference Proceedings, IEEE, 1998, 2: 57–67.

    Google Scholar 

  2. Barnett D M, Rawal S, Rummel K. Multifunctional structures for advanced spacecraft. Journal of Spacecraft and Rockets, 2001, 38: 226–230.

    Article  Google Scholar 

  3. Barnett D M, Rawal S P. Multifunctional structures technology experiment on Deep Space 1 Mission. IEEE Aerospace and Electronic Systems Magazine, 1999, 14: 13–18.

    Article  Google Scholar 

  4. Fosness E, Guerrero J, Qassim K, et al. Recent advances in multi-functional structures. Aerospace Conference Proceedings, IEEE, 2000, 4: 23–28.

    Google Scholar 

  5. Evans A G, Hutchinson J W, Ashby M F. Multifunctionality of cellular metal systems. Progress in Materials Science, 1999: 171–221.

    Google Scholar 

  6. Seepersad C C, Fernandez M G, Panchal J H, et al. Foundations for a systems-based approach for materials design // The 10th AIAA/SSMO Multidisciplinary Analysis and Optimization Conference. New York, 2004.

    Google Scholar 

  7. Gu S, Lu T J, Evans A. On the design of two-dimensional cellular metals for combined heat dissipation and structural load capacity. International Journal of Heat and Mass Transfer, 2001, 44: 2163–2175.

    Article  MATH  Google Scholar 

  8. Hayes A M, Wang A J, Dempsey B M, et al. Mechanics of linear cellular alloys. Mechanics of Materials, 2004, 36: 691–713.

    Article  Google Scholar 

  9. Seepersad C C, Dempsey B M, Allen J K, et al. Design of multifunctional honeycomb materials. AIAA Journal, 2004, 42: 1025–1033.

    Article  Google Scholar 

  10. Sypeck D, Wadley H. Multifunctional microtruss laminates: Textile synthesis and properties. Journal of Materials Research, 2001, 16: 890–897.

    Article  Google Scholar 

  11. Tian J. Fluid Flow and Heat Transfer in Woven Textiles [PhD thesis]. Cambridge: University of Cambridge, 2005.

    Google Scholar 

  12. Wadley H N G. Cellular metals manufacturing. Advanced Engineering Materials, 2002, 4: 726–733.

    Article  Google Scholar 

  13. Lu T J, Stone H A, Ashby M F. Heat transfer in open-cell metal foams. Acta Materialia, 1998, 46: 3619–3635.

    Article  Google Scholar 

  14. Ashby M F. The properties of foams and lattices. Philosophical Transactions of the Royal Society A, 2006, 364: 15–30.

    Article  MathSciNet  Google Scholar 

  15. Queheillalt D T, Sypeck D J, Wadley H N G. Ultrasonic characterization of cellular metal structures. Materials Science and Engineering, 2002, 323: 138–147.

    Article  Google Scholar 

  16. Fleck N A. An Overview of the Mechanical Properties of Foams and Periodic Lattice Materials. Germany: Trans Tech Publications, 2005.

    Google Scholar 

  17. Wadley H N G. Multifunctional periodic cellular metals. Philosophical Transactions of the Royal Society A, 2006, 364: 31–68.

    Article  Google Scholar 

  18. Evans A G, Hutchinson J W, Fleck N A, et al. The topological design of multifunctional cellular metals. Progress in Materials Science, 2001: 309– 327.

    Google Scholar 

  19. Bastawros A F, Evans A G, Stone H A. Evaluation of Cellular Metal Heat Dissipation Media. Cambridge: Harvard University, 1998.

    Google Scholar 

  20. Ashby M, Evans A, Fleck N, et al. Metal Foams: A Design Guide. Boston: Butterworth-Heinemann, 2000.

    Google Scholar 

  21. Tian J, Kim T, Lu T J, et al. The effects of topology upon fluid-flow and heat-transfer within cellular copper structures. International Journal of Heat and Mass Transfer, 2004, 47: 3171–3186.

    Article  MATH  Google Scholar 

  22. Kim T. Fluid-Flow and Heat-Transfer in a Lattice-Frame Material [PhD thesis]. Cambridge: University of Cambridge, 2003.

    Google Scholar 

  23. Wen T. Thermo-Fluid Characteristics of Metallic 2D Cellular Materials [PhD thesis]. Cambridge: University of Cambridge, 2007.

    Google Scholar 

  24. Chen C, Lu T J, Fleck N A. Effect of inclusions and holes on the stiffness and strength of honeycombs. International Journal of Mechanical Sciences, 2001, 43: 487–504.

    Article  MATH  Google Scholar 

  25. Gibson L J, Ashby M F. Cellular Solids: Structure & Properties. 2nd Edition. Cambridge: Cambridge University Press, 1997.

    Book  Google Scholar 

  26. Li C, Wirtz R. Development of high performance heat sink based on screenfin technology // The 19th IEEE Semi-Thermal, San Jose, 2003: 53–60.

    Google Scholar 

  27. Xu J, Wirtz R. In-plane effective thermal conductivity of plain-weave screen laminates with arbitrary weave parameters // The 6th ASME-JSME Thermal Engineering Joint Conference. Hawaii, 2003.

    Google Scholar 

  28. Hoffmann F, Lu T J, Hodson H P. Heat transfer performance of Kagome structures // The 8th UK National Heat Transfer Conference. Oxford, 2003.

    Google Scholar 

  29. Chiras S, Mumm D R, Evans A G, et al. The structural performance of near-optimized truss core panels. International Journal of Solid and Structures, 2002, 39: 4093–4115.

    Article  Google Scholar 

  30. Wicks N, Hutchinson J W. Optimal truss plates. International Journal of Solid and Structures, 2001, 38: 5165–5183.

    Article  MATH  Google Scholar 

  31. Wallach J C, Gibson L J. Mechanical behaviour of a three-dimensional truss material. International Journal of Solid and Structures, 2001, 38: 7181–7196.

    Article  MATH  Google Scholar 

  32. Deshpande V S, Fleck N A. Collapse of truss core sandwich beams in 3-point bending. International Journal Solid and Structures, 2001, 38: 6275–6305.

    Article  MATH  Google Scholar 

  33. Deshpande V S, Fleck N A, Ashby M F. Effective properties of the octettruss lattice material. Journal of the Mechanics and Physics Solid, 2001, 49: 1747–1769.

    Article  MATH  Google Scholar 

  34. Bitzer T. Honeycomb Technology. London: Chapman & Hall, 1997.

    Book  Google Scholar 

  35. Lu T J. Heat transfer efficiency of metal honeycombs. International Journal of Heat and Mass Transfer, 1999, 42: 2031–2040.

    Article  MATH  Google Scholar 

  36. Zhang J, Ashby M F. The out-of-plane properties of honeycombs. International Journal of Mechanical Sciences, 1992, 34: 475–489.

    Article  Google Scholar 

  37. Xue Z, Hutchinson J W. Preliminary assessment of sandwich plates subject to blast loads. International Journal of Mechanical Sciences, 2003, 45: 687–705.

    Article  MATH  Google Scholar 

  38. Fleck N A, Deshpande V S. The resistance of clamped sandwich beams to shock loading. Journal of Applied Mechanics, 2004, 71: 386–401.

    Article  MATH  Google Scholar 

  39. Despande V S, Fleck N A. Blast resistance of clamped sandwich beams // The 21st International Congress of Theoretical and Applied Mechanics. Warsaw, 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing, and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, T.J., Xu, F., Wen, T. (2013). Introduction. In: Thermo-Fluid Behaviour of Periodic Cellular Metals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33524-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33524-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33523-5

  • Online ISBN: 978-3-642-33524-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics