Advertisement

Nonlinear Sliding Mode Control Implementation of an Upper Limb Exoskeleton Robot to Provide Passive Rehabilitation Therapy

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7507)

Abstract

Treatment for upper extremity impairment following a stroke or other conditions relies on rehabilitation programs, especially on passive arm movement therapy at the early stages of impairment. An exoskeleton robot (ETS-MARSE) was developed to be worn on the lateral side of upper-limb to rehabilitate and assist daily upper-limb motion. We have implemented a nonlinear sliding mode control technique to maneuver the ETS-MARSE in providing different passive rehabilitation exercises that include single and multi joint movement exercises. To evaluate the robustness and tracking performance of the controller, exercise involving healthy human subject were performed, where spasticity (a resistance) on arm movement which often found to subjects following a stroke was added artificially. Experimental results show the efficient performance of the controller to maneuver the exoskeleton to provide passive rehabilitation therapy.

Keywords

ETS-MARSE Exoskeleton Robot Passive Rehabilitation Therapy Arm Spasticity Sliding Mode Control 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Colombo, R., Pisano, F., Micera, S., Mazzone, A., Delconte, C., Carrozza, M.C., Dario, P., Minuco, G.: Robotic techniques for upper limb evaluation and rehabilitation of stroke patients. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 311–324 (2005)CrossRefGoogle Scholar
  2. 2.
    Huang, H.C., Chung, K.C., Lai, D.C., Sung, S.F.: The impact of timing and dose of rehabilitation delivery on functional recovery of stroke patients. J. Chin. Med. Assoc. 72, 257–264 (2009)CrossRefGoogle Scholar
  3. 3.
    Masiero, S., Celia, A., Rosati, G., Armani, M.: Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch. Phys. Med. Rehabil. 88, 142–149 (2007)CrossRefGoogle Scholar
  4. 4.
    Wang, D.: Physical Therapy Exercises for a Stroke Patient’s Arm (2011)Google Scholar
  5. 5.
    Mackay, J., Mensah, G.: Atlas of Heart Disease and Stroke. World Health Organization, Nonserial Publication, Brighton, UK (2004)Google Scholar
  6. 6.
    Parker, V.M., Wade, D.T., Langton, H.R.: Loss of arm function after stroke: measurement, frequency, and recovery. Int. Rehabilitation Medicine 8, 69–73 (1986)Google Scholar
  7. 7.
    Lum, P.S., Burgar, C.G., Shor, P.C., Majmundar, M., Van der Loos, M.: Robot-assisted movement training compared with conventional therapy techniques for the rehabilitation of upper-limb motor function after stroke. Archives of Physical Medicine and Rehabilitation 83, 952–959 (2002)CrossRefGoogle Scholar
  8. 8.
    Rahman, M.H., Ouimet, T.K., Saad, M., Kenne, J.P., Archambault, P.S.: Dynamic Modeling and Evaluation of a Robotic Exoskeleton for Upper-Limb Rehabilitation. International Journal of Information Acquisition 8, 83–102 (2011)CrossRefGoogle Scholar
  9. 9.
    Rahman, M.H., Saad, M., Kenne, J.P., Archambault, P.S.: Robot assisted rehabilitation for elbow and forearm movements. Int. J. Biomechatronics and Biomedical Robotics 1, 206–218 (2011)CrossRefGoogle Scholar
  10. 10.
    Rahman, M.H., Ouimet, T.K., Saad, M., Kenne, J.P., Archambault, P.S.: Development of a 4DoFs Exoskeleton Robot for Passive Arm Movement Assistance. Int. J. Mechatronics and Automation 2, 34–50 (2012)CrossRefGoogle Scholar
  11. 11.
    Dobkin, B.H.: Strategies for stroke rehabilitation. Lancet Neurol. 3, 528–536 (2004)CrossRefGoogle Scholar
  12. 12.
    Slotine, J.J.E., Li, W.: Applied nonlinear control. Prentice-Hall, Englewood Cliffs (1991)zbMATHGoogle Scholar
  13. 13.
    Department of Rehabilitation Services, Brigham and Women’s Hospital, http://www.brighamandwomens.org/Patients_Visitors/pcs/rehabilitationservices/StandardsofCare.aspx
  14. 14.
    Post-Stroke Rehabilitation Fact Sheet. In: Health, N.I.o. (ed.) National Institute of Neurological Disorders and Stroke. National Institutes of Health, Bethesda, MD 20892, USA (2011) Google Scholar
  15. 15.
    Kumar, R.T., Pandyan, A.D., Sharma, A.K.: Biomechanical measurement of post-stroke spasticity. Age Ageing 35, 371–375 (2006)CrossRefGoogle Scholar
  16. 16.
    Siciliano, B., Sciavicco, L., Villani, L.: Robotics: Modelling, Planning and Control. Springer, London (2009)Google Scholar
  17. 17.
    National Instruments, N.: NI PXI-8108-2.53 GHz Dual-Core PXI Embedded Controller. National Instruments (2012), http://sine.ni.com/nips/cds/view/p/lang/en/nid/206087

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.École de Technologie SuperieureMontrealCanada
  2. 2.School of Physical & Occupational TherapyMcGill UniversityMontrealCanada

Personalised recommendations