A Robotic Pan and Tilt 3-D Target Tracking System by Data Fusion of Vision, Encoder, Accelerometer, and Gyroscope Measurements

  • Tae-Il Kim
  • Wook Bahn
  • Chang-Hun Lee
  • Tae-Jae Lee
  • Byung-Moon Jang
  • Sang-Hoon Lee
  • Min-Wug Moon
  • Dong-Il “Dan” Cho
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7507)

Abstract

This paper presents a vision-tracking system for mobile robots, which travel in a 3-dimentional environment. The developed system controls pan and tilt actuators attached to a camera so that a target is always directly in the line of sight of the camera. This is achieved by using data from robot wheel encoders, a 3-axis accelerometer, a 3-axis gyroscope, pan and tilt motor encoders, and camera. The developed system is a multi-rate sampled data system, where the sampling rate of the camera is different with that of the other sensors. For the accurate estimation of the robot velocity, the developed system detects the slip of robot wheels, by comparing the data from the encoders and the accelerometer. The developed system estimates the target position by using an extended Kalman filter. The experiments are performed to show the tracking performance of the developed system in several motion scenarios, including climbing slopes and slip cases.

Keywords

Vision tracking system Sensor data fusion Kalman filter Slip detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Espiau, B., Chaumette, F., Rives, P.: A New Approach to Visual Servoing in Robotics. IEEE Transactions on Robotics and Automation 8(3), 313–326 (1992)CrossRefGoogle Scholar
  2. 2.
    Hutchinson, S., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Transactions on Robotics and Automation 12(5), 615–670 (1996)CrossRefGoogle Scholar
  3. 3.
    Corke, P.I., Hutchinson, S.: A New Partitioned Approach to Image Based Visual Servo Control. IEEE Transactions on Robotics and Automation 17(4), 507–515 (2001)CrossRefGoogle Scholar
  4. 4.
    Hamel, T., Mahony, R.: Visual Servoing of an Under-Actuated Dynamic Rigid-Body System: An Image-Based Approach. IEEE Transactions on Robotics and Automation 18(2), 507–515 (2002)CrossRefGoogle Scholar
  5. 5.
    Chena, J., Dawsonb, D.M., Dixonc, W.E., Chitrakaran, V.K.: Navigation Function-Based Visual Servo Control. Automatica 43(7), 1165–1177 (2007)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Algrain, M.C., Quinn, J.: Accelerometer Based Line-of-Sight Stabilization Approach for Pointing and Tracking Systems. In: Second IEEE Conference on Control Applications, vol. 1, pp. 159–163 (1993)Google Scholar
  7. 7.
    Panerai, F., Metta, G., Sandini, G.: Visuo-Inertial Stabilization in Space-Variant Binocular Systems. Robotics and Autonomous Systems 30(1-2), 195–214 (2000)CrossRefGoogle Scholar
  8. 8.
    Xie, S., Luo, J., Gong, Z., Ding, W., Zou, H., Fu, X.: Biomimetic Control of Pan-Tilt-Zoom Camera for Visual Tracking Based-on an Autonomous Helicopter. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2138–2143 (2007)Google Scholar
  9. 9.
    Lenz, A., Balakrishnan, T., Pipe, A.G., Melhuish, C.: An Adaptive Gaze Stabilization Controller Inspired by the Vestibulo-Ocular Reflex. Bioinspiration & Biomimetics 3, 1–11 (2008)CrossRefGoogle Scholar
  10. 10.
    Hwangbo, M., Kim, J., Kanade, T.: Inertial-Aided KLT Feature Tracking for a Moving Camera. In: Intelligent Robots and Systems, pp. 1909–1916 (2009)Google Scholar
  11. 11.
    Hwang, W., Park, J., Kwon, H., Anjum, M., Kim, J., Lee, C., Kim, K., Cho, D.D.: Vision Tracking System for Mobile Robots Using Two Kalman Filters and a Slip Detector. In: International Conference on Control, Automation and Systems, pp. 2041–2046 (2010)Google Scholar
  12. 12.
    Park, J., Hwang, W., Kwon, H., Kim, K., Cho, D.D.: A Novel Line of Sight Control System for a Robot Vision Tracking System, Using Vision Feedback and Motion-Disturbance Feedforward Compensation. Robotica (accepted)Google Scholar
  13. 13.
    Kim, T., Bahn, W., Lee, C., Lee, T., Shaikh, M.M., Kim, K.: Vision System for Mobile Robots for Tracking Moving Targets, Based on Robot Motion and Stereo Vision Information. In: 2011 IEEE/SICE International Symposium on System Integration, pp. 634–639 (2011)Google Scholar
  14. 14.
    Jun, B., Kim, D.: Robust Real-Time Face Detection Using Face Certainty Map. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 29–38. Springer, Heidelberg (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tae-Il Kim
    • 1
  • Wook Bahn
    • 1
  • Chang-Hun Lee
    • 1
  • Tae-Jae Lee
    • 1
  • Byung-Moon Jang
    • 1
  • Sang-Hoon Lee
    • 2
  • Min-Wug Moon
    • 2
  • Dong-Il “Dan” Cho
    • 1
  1. 1.Department of Electrical Engineering and Computer Science/ASRI/ISRCSeoul National UniversitySeoulKorea
  2. 2.RS AutomationGyeonggi-doKorea

Personalised recommendations