Wireless Electrical Power to Sub-millimeter Robots

  • Robert A. Nawrocki
  • Dominic R. Frutiger
  • Richard M. Voyles
  • Bradley J. Nelson
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7507)

Abstract

A sub-millimeter scale coil is investigated as an alternative means to power electronics for small-scale robots. The AC voltage is induced by time-varying magnetic field. FEM analysis of employing magnetic field concentrators to increase the field density is carried out, concluding with their ineffectiveness to offset the occupied space. The choice of conductive versus non-conductive photoresist is investigated. The coil fabrication process is based upon three-dimensional, two-photon-absorption photolithography. Additional steps include metal sputtering, microlaser patterning and wire-bonding. The steps detailing the entire design process are described. With the coil occupying a volume of 0.45 pico m3, the maximum AC voltage of approximately 84 nV, with power density of about 1.96 mW per meter cube were measured. The study concludes with proposing ways to increase the induced voltage to a useable voltage of 2 V.

Keywords

microfabrication microrobotic manipulation power generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frutiger, D.R., Vollmers, K., Kratochvil, B.E., Nelson, B.J.: Small, Fast, and Under Control: Wireless Resonant Magnetic Micro-agents. IJRR 29(5), 613–636 (2010)Google Scholar
  2. 2.
    Pawashe, C., Floyd, S., Sitti, M.: Modeling and Experimental Characterization of an Untethered Magnetic Micro-Robot. IJRR 28(8), 1077–1094 (2009)Google Scholar
  3. 3.
    Nawrocki, R.A., Shaheen, S.E., Voyles, R.M.: A Neuromorphic Architecture From Single Transistor Neurons With Organic Bistable Devices For Weights. In: Proc. IEEE IJCNN, pp. 450–456 (2011)Google Scholar
  4. 4.
    http://www.excellatron.com/advantage.html (last accessed August 31, 2011)
  5. 5.
    Jeea, S.H., Leeb, M.J., Ahnc, H.S., Kimc, D.J., Choid, J.W., Yoond, S.J., Name, S.C., Kime, S.H., Yoon, Y.S.: Characteristics of a new type of solid-state electrolyte with a LiPON interlayer for Li-ion thin film batteries. Solid State Ionics 181(19-20), 902–906 (2010)CrossRefGoogle Scholar
  6. 6.
    Peckerar, M., Dilli, Z., Dornajafi, M., Goldsman, N., Ngu, Y., Proctor, R.B., Krupsaw, B.J., Lowy, D.A.: A novel high energy density flexible galvanic cell. Energy & Environmental Science 4, 1807–1812 (2011)CrossRefGoogle Scholar
  7. 7.
    Lal, A., Duggirala, R., Li, H.: Pervasive power: A radioisotope-powered piezoelectric generator. IEEE Pervasive Computing 4, 53–61 (2005)CrossRefGoogle Scholar
  8. 8.
    Pana, C.T., Liua, Z.H., Chenb, Y.C., Liu, C.F.: Design and fabrication of flexible piezo-microgenerator by depositing ZnO thin films on PET substrates. Sensors and Actuators A 159, 96–104 (2010)CrossRefGoogle Scholar
  9. 9.
    Hollar, S., Flynn, A., Bellew, C., Pister, K.S.J.: Solar powered 10 mg silicon robot. In: IEEE Micro Electro Mechanical Systems, pp. 706–711 (2003)Google Scholar
  10. 10.
    Churman, W.A., Gerratt, A.P., Bergbreiter, S.: First leaps toward jumping microrobots. In: IEEE IROS, pp. 1680–1686 (2011)Google Scholar
  11. 11.
    Arnold, D.P.: Review of Microscale Magnetic Power Generation. IEEE Trans. on Magnetics 43(11), 3940–3951 (2007)CrossRefGoogle Scholar
  12. 12.
    Cepnik, C., Wallrabe, U.: A micro energy harvested with 3D wire bonded microcoils. Transducers, 665–668 (2011)Google Scholar
  13. 13.
    Mack, B., Kratt, K., Stürmer, M., Wallrabe, U.: Electromagnetic Micro Generator Array Consisting of 3D Micro Coils Opposing a Magnetic PDMS Membrane. In: Transducers 2009, pp. 1397–1400 (2009)Google Scholar
  14. 14.
    Brauer, J.R.: Magnetic actuators and sensors, p. 20. John Wiley and Sons (2006)Google Scholar
  15. 15.
    Yeadon, W.H., Yeadon, A.W.: Handbook on small electric motors, p. 1.67. McGraw-Hill (2001)Google Scholar
  16. 16.
    http://www.nanoscribe.de/ (August 31, 2011)
  17. 17.
  18. 18.
    Sheats, J.R., Biesty David, D., Noel, J., et al.: Printing technology for ubiquitous electronics. Circuit World 36, 40–47 (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Robert A. Nawrocki
    • 1
  • Dominic R. Frutiger
    • 2
  • Richard M. Voyles
    • 1
  • Bradley J. Nelson
    • 2
  1. 1.Department of Computer EngineeringUniversity of DenverColoradoUSA
  2. 2.Institute of Robotics and Intelligent SystemsETH ZürichSwitzerland

Personalised recommendations