Scaling Studies for an Actively Controlled Curvature Robotic Pectoral Fin

  • Jason D. Geder
  • Ravi Ramamurti
  • John Palmisano
  • Marius Pruessner
  • Banahalli Ratna
  • William C. Sandberg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7508)


Scaling studies for an actively controlled curvature robotic pectoral fin are presented in detail. Design, development, and analysis of the fin are conducted using a combination of computational fluid dynamics tools and experimental tests. Results include a Generation 2 (Gen2) fin design with approximately 3x more surface area and a slightly larger aspect ratio compared with our Generation 1 (Gen1) version. The Gen2 fin demonstrates 9x more thrust production than the Gen1 fin, validating the computational studies. Additionally, changes to the structural design of the ribs and actuation of the rib angles leads to a power savings and a more efficient fin.


bio-inspired pectoral fin active curvature control UUV station- keeping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colgate, J.E., Lynch, K.M.: Mechanics and Control of Swimming: A Review. IEEE Journal of Oceanic Engineering 29, 660–673 (2004)CrossRefGoogle Scholar
  2. 2.
    Bandyopadhyay, P.R.: Trends in biorobotic autonomous undersea vehicles. IEEE Journal of Oceanic Engineering 30, 109–139 (2005)CrossRefGoogle Scholar
  3. 3.
    Walker, J., Westneat, M.A.: Labriform propulsion in fishes: kinematics of flapping aquatic flight in the bird wrasse, Gomphosus varius. Journal of Experimental Biology 200, 1549–1569 (1997)Google Scholar
  4. 4.
    Kato, N.: Hydrodynamic Characteristics of a Mechanical Pectoral Fin. ASME Journal of Fluids Engineering 121, 605–613 (1999)CrossRefGoogle Scholar
  5. 5.
    Kato, N.: Control Performance of a Fish Robot with Mechanical Pectoral Fins in the Horizontal Plane. IEEE Journal of Oceanic Engineering 25(1), 121–129 (2000)CrossRefGoogle Scholar
  6. 6.
    Hobson, B., Murray, M., Pell, C.A.: PilotFish: Maximizing Agility in an Unmanned-Underwater Vehicle. In: Proceedings of the International Symposium on Unmanned Untethered Submersible Technology, Durham, NH (1999)Google Scholar
  7. 7.
    Licht, S., Polidoro, V., Flores, M., Hover, F.S., Triantafyllou, M.S.: Design and Projected Performance of a Flapping Foil AUV. IEEE Journal of Oceanic Engineering 29(3), 786–794 (2004)CrossRefGoogle Scholar
  8. 8.
    Ando, Y., Kato, N., Suzuki, H., Ariyoshi, T., Suzumori, K., Kanda, T., Endo, S.: Elastic Pectoral Fin Actuators for Biomimetic Underwater Vehicles. In: Proceedings of the 16th International Offshore and Polar Engineering Conference, pp. 260–267 (2006)Google Scholar
  9. 9.
    Palmisano, J., Ramamurti, R., Lu, K.J., Cohen, J., Sandberg, W.C., Ratna, B.: Design of a Biomimetic Controlled-Curvature Robotic Pectoral Fin. In: IEEE Int. Conf. on Robotics and Automation, Rome, Italy (2007)Google Scholar
  10. 10.
    Moored, K.W., Smith, W., Chang, W., Bart-Smith, H.: Investigating the thrust production of a myliobatoid-inspired oscillating wing. In: 3rd International CIMTEC Conference, Acireale, Italy (2008)Google Scholar
  11. 11.
    Tangorra, J., Davidson, N., Hunter, I., Madden, P., Lauder, G., Dong, H., Bozkurttas, M., Mittal, R.: The Development of a Biologically Inspired Propulsor for Unmanned Underwater Vehicles. IEEE Journal of Oceanic Engineering 32(3), 533–550 (2007)CrossRefGoogle Scholar
  12. 12.
    Geder, J.D., Ramamurti, R., Palmisano, J., Pruessner, M., Ratna, B., Sandberg, W.C.: Dynamic Performance of a Bio-Inspired UUV: Effects of Fin Gaits and Orientation. In: Proceedings of the 17th International Symposium on Unmanned Untethered Submersible Technology, Portsmouth, NH (2011)Google Scholar
  13. 13.
    Geder, J.D., Ramamurti, R., Palmisano, J., Pruessner, M., Sandberg, W.C., Ratna, B.: Four-fin Bio-inspired UUV: Modeling and Control Solutions. In: ASME International Mechanical Engineering Congress and Exposition, International Mechanical Engineering Congress and Exposition, 2011-64005 (2011)Google Scholar
  14. 14.
    National Oceanic and Atmospheric Administration Tides and Currents Information,
  15. 15.
    Clem, T.: Oceanographic Effects on Maritime Threats: Mines and Oil Spills in the Strait of Hormuz. Master’s Thesis, Naval Postgraduate School, Monterey, CA (2007)Google Scholar
  16. 16.
    Ramamurti, R., Sandberg, W.C.: Computational Fluid Dynamics Study for Optimization of a Fin Design. In: Proceedings of the 24th AIAA Applied Aerodynamics Conference, San Francisco, CA. AIAA-2006-3658 (2006)Google Scholar
  17. 17.
    Bozkurttas, M., Mittal, R., Dong, H., Lauder, G.V., Madden, P.: Low-dimensional models and performance scaling of a highly deformable fish pectoral fin. Journal of Fluid Mechanics 631, 311–342 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Ramamurti, R., Sandberg, W.: Simulation of Flow About Flapping Airfoils Using Finite Element Incompressible Flow Solver. AIAA Journal 39(2), 253–260 (2002)CrossRefGoogle Scholar
  19. 19.
    Ramamurti, R., Geder, J.D., Palmisano, J., Ratna, B., Sandberg, W.C.: Computations of Flapping Flow Propulsion for Unmanned Underwater Vehicle Design. AIAA Journal 48(1), 188–201 (2010)CrossRefGoogle Scholar
  20. 20.
    Azuma, A.: The Biokinetics of Flying and Swimming. Springer, Tokyo (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Jason D. Geder
    • 1
  • Ravi Ramamurti
    • 1
  • John Palmisano
    • 2
  • Marius Pruessner
    • 3
  • Banahalli Ratna
    • 3
  • William C. Sandberg
    • 4
  1. 1.Laboratory for Computational Physics and Fluid DynamicsNaval Research LaboratoryWashington, DCUSA
  2. 2.NOVA Research, Inc.Naval Research LaboratoryWashington, DCUSA
  3. 3.Center for Bio-molecular Science and EngineeringNaval Research LaboratoryWashington, DCUSA
  4. 4.Modeling and Analysis DivisionScience Applications International CorporationMcLeanUSA

Personalised recommendations