Adaptive Processing of Multi-Criteria Decision Support Queries

  • Shweta Srivastava
  • Venkatesh Raghavan
  • Elke A. Rundensteiner
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 126)


Business intelligence applications ranging from stock market tickers to strategic supply chain adaptation systems require the efficient support of multi-criteria decision support (MCDS) queries. Skyline queries are a popular class of MCDS queries that have received a lot of attention recently. However, a vast majority of skyline algorithms focus entirely on the input being a single data set. In this work, we instead focus on supporting the more powerful SkyMapJoin queries. Our Adaptive-SKIN framework conducts processing at two levels of abstraction thereby effectively minimizing the two primary costs, namely the cost of generating join results and the cost of dominance comparisons to compute the final skyline of the join results. Our proposed approach hinges on two key principles. First, in the input space – Adaptive-SKIN determines the abstraction levels dynamically at run time instead of assigning a static one at compile time. This is achieved by adaptively partitioning the input data driven by the feedback of the results already generated. Second, Adaptive-SKIN incrementally build the output space, containing the final skyline, without generating a single join result. Our approach selectively drills into regions in the output space that show promise in generating result tuples as well as avoiding the generation of intermediate results that do not contribute to the query result. In this effort, we propose a cost-vs.-benefit driven strategy for abstraction selection. Our experimental evaluation demonstrates the superiority of the Adaptive-SKIN over state-of-the-art techniques over benchmark data.


Priority Queue Abstraction Level Output Region Output Space Skyline Query 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421–430 (2001)Google Scholar
  2. 2.
    Papadias, D., Tao, Y., Fu, G., Seeger, B.: An optimal and progressive algorithm for skyline queries. In: SIGMOD Conference, pp. 467–478 (2003)Google Scholar
  3. 3.
    Bartolini, I., Ciaccia, P., Patella, M.: Salsa: computing the skyline without scanning the whole sky. In: CIKM, pp. 405–414 (2006)Google Scholar
  4. 4.
    Raghavan, V., Rundensteiner, E.A., Srivastava, S.: Skyline and mapping aware join query evaluation. Inf. Syst. 36(6), 917–936 (2011)CrossRefGoogle Scholar
  5. 5.
    Raghavan, V., Rundensteiner, E.A.: Progressive result generation for multi-criteria decision support queries. In: ICDE, pp. 733–744 (2010)Google Scholar
  6. 6.
    Morse, M., Patel, J., Grosky, W.: Efficient continuous skyline computation. Inf. Sci., 3411–3437 (2007)Google Scholar
  7. 7.
    Mishra, C., Koudas, N.: Interactive query refinement. In: EDBT, pp. 862–873 (2009)Google Scholar
  8. 8.
    Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On High Dimensional Skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 478–495. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  9. 9.
    Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing join and selection queries. In: VLDB, pp. 199–210 (2006)Google Scholar
  10. 10.
    Jin, W., Morse, M.D., Patel, J.M., Ester, M., Hu, Z.: Evaluating skylines in the presence of equijoins. In: ICDE, pp. 249–260 (2010)Google Scholar
  11. 11.
    Jin, W., Ester, M., Hu, Z., Han, J.: The multi-relational skyline operator. In: ICDE, pp. 1276–1280 (2007)Google Scholar
  12. 12.
    Sun, D., Wu, S., Li, J., Tung, A.K.H.: Skyline-join in distributed databases. In: ICDE Workshops, pp. 176–181 (2008)Google Scholar
  13. 13.
    Vlachou, A., Doulkeridis, C., Polyzotis, N.: Skyline query processing over joins. In: SIGMOD (2011) (to appear)Google Scholar
  14. 14.
    Khalefa, M.E., Mokbel, M.F., Levandoski, J.J.: Prefjoin: An efficient preference-aware join operator. In: ICDE, pp. 995–1006 (2011)Google Scholar
  15. 15.
    Valkanas, G., Papadopoulos, A.N.: Efficient and Adaptive Distributed Skyline Computation. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 24–41. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Chen, L., Cui, B., Lu, H., Xu, L., Xu, Q.: iSky: Efficient and progressive skyline computing in a structured p2p network. In: ICDCS, pp. 160–167 (2008)Google Scholar
  17. 17.
    Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: PODS, pp. 102–113 (2001)Google Scholar
  18. 18.
    Natsev, A., Chang, Y.-C., Smith, J.R., Li, C.-S., Vitter, J.S.: Supporting incremental join queries on ranked inputs. In: VLDB, pp. 281–290 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Shweta Srivastava
    • 1
  • Venkatesh Raghavan
    • 2
  • Elke A. Rundensteiner
    • 3
  1. 1.Microsoft CorporationCambridgeUSA
  2. 2.Data Computation DivisionEMC GreenplumSan MateoUSA
  3. 3.Department of Computer ScienceWorcester Polytechnic InstituteUSA

Personalised recommendations