Skip to main content

CO2 Selective Separation Membranes

  • Chapter
Book cover Eco- and Renewable Energy Materials

Abstract

Over the past two decades, membrane technology has attracted tremendous attention at CO2 separation from other gases, which has shown great potential to significantly improve energy efficiency and reduce cost associated with processes. The membrane structures and chemistry properties greatly affect their CO2 separation performances, including selectivity and permeability. In recent years, there has been significant progress in the development of CO2-selective membranes. This chapter reviewed the recent activities relating to the fabrication and separation performances of polymeric, inorganic and mixed-matrix membranes for CO2 separation purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. U.K. Office of Climate Change (OCC). Stern review on the economics of climate change. 2005; Available from: http://www.hm-treasury.gov.uk/sternreview_index.htm.

    Google Scholar 

  2. Pera-Titus M, Alshebani A, Nicolas C H, et al. Nanocomposite MFI—alumina membranes: High-flux hollow fibers for CO2 capture from internal combustion vehicles. Industrial and Engineering Chemistry Research, 2009, 48(20): 9215–9223.

    Google Scholar 

  3. Shekhawat D, Luebke D R, Pennline H W, A review of carbon dioxide selective membranes. National Energy Technology Laboratory, United States Department of Energy, 2003.

    Google Scholar 

  4. D’Alessandro D, Smit B, Long J. Carbon dioxide capture: Prospects for new materials. Angewandte Chemie-International Edition, 2010, 49(35): 6058–6082.

    Google Scholar 

  5. Alexander S S. Polymers for gas separations: the next decade. Journal of Membrane Science, 1994, 94(1): 1–65.

    Google Scholar 

  6. Sridhar S, Smitha B, Aminabhavi T M. Separation of carbon dioxide from natural gas mixtures through polymeric membranes-A review. Separation and Purifi cation Reviews, 2007, 36(2): 113–174.

    Google Scholar 

  7. Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279(1–2): 1–49.

    Google Scholar 

  8. Basu S, Khan A L, Cano-Odena A, et al. Membrane-based technologies for biogas separations. Chemical Society Reviews, 2010, 39(2): 750–768.

    Google Scholar 

  9. Chung T S, Jiang L Y, Li Y, et al. Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Progress in Polymer Science, 2007, 32(4): 483–507.

    Google Scholar 

  10. Chew T L, Ahmad A L, Bhatia S. Ordered mesoporous silica (OMS) as an adsorbent and membrane for separation of carbon dioxide (CO2). Advances in Colloid and Interface Science, 2010, 153(1-2): 43–57.

    Google Scholar 

  11. Scholes C A, Kentish S E, Stevens G W. Effects of minor components in carbon dioxide capture using polymeric gas separation membranes. Separation and Purification Reviews, 2009, 38(1): 1–44.

    Google Scholar 

  12. Brunetti A, Scura F, Barbieri G, et al. Membrane technologies for CO2 separation. Journal of Membrane Science, 2010, 359(1-2): 115–125.

    Google Scholar 

  13. Yang H, Xu Z, Fan M, et al. Progress in carbon dioxide separation and capture: A review. Journal of Environment Science, 2008, 20(1): 14–27.

    Google Scholar 

  14. Xiao Y, Low B T, Hosseini S S, et al. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas-A review. Progress in Polymer Science, 2009, 34(6): 561–580.

    Google Scholar 

  15. Bernardo P, Drioli E, Golemme G. Membrane gas separation: A review/state of the art. Ind. Eng. Industrial and Engineering Chemistry Research, 2009, 48(10): 4638–4663.

    Google Scholar 

  16. Baker R W, Membrane Technology and Applications. 2nd ed. West Sussex: John Wiley and Sons Ltd, 2004

    Google Scholar 

  17. Robeson L M. Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science, 1991, 62(2): 165–185.

    Google Scholar 

  18. Robeson L M. the upper bound revisited. Journal of Membrane Science, 2008, 320(1-2): 390–400.

    Google Scholar 

  19. Koros W J, Mahajan R. Pushing the limits on possibilities for large scale gas separation: Which strategies? Journal of Membrane Science, 2000, 175(2): 181–196.

    Google Scholar 

  20. Jansen J C, Macchione M, Drioli E. High flux asymmetric gas separation membranes of modified poly(ether ether ketone) prepared by the dry phase inversion technique. Journal of Membrane Science, 2005, 255(1-2): 167–180.

    Google Scholar 

  21. Kesting R E, Fritzsche A K, Polymeric Gas Separation Membranes. New York: John Wiley and Sons. 1993

    Google Scholar 

  22. Jansen J C, Buonomenna M G, Figoli A, et al. Asymmetric membranes of modified poly(ether ether ketone) with an ultra-thin skin for gas and vapour separations. Journal of Membrane Science, 2006, 272(1-2): 188–197.

    Google Scholar 

  23. Hamad F, Khulbe K C, Matsuura T. Comparison of gas separation performance and morphology of homogeneous and composite PPO membranes. Journal of Membrane Science, 2005, 256(1-2): 29–37.

    Google Scholar 

  24. Liang W, Martin C R. Gas transport in electronically conductive polymers. Journal of Materials Chemistry, 1991, 3(3): 390–391.

    Google Scholar 

  25. Petersen J, Peinemann K V. Novel polyamide composite membranes for gas separation prepared by interfacial polycondensation. Journal of Applied Polymer Science, 1997, 63(12): 1557–1563.

    Google Scholar 

  26. Zhao J, Wang Z, Wang J, et al. Influence of heat-treatment on CO2 separation performance of novel fixed carrier composite membranes prepared by interfacial polymerization. Journal of Membrane Science, 2006, 283(1–2): 346–356.

    Google Scholar 

  27. Sridhar S, Smitha B, Mayor S, et al. Gas permeation properties of polyamide membrane prepared by interfacial polymerization. Journal of Materials Chemistry, 2007, 42(22): 9392–9401.

    Google Scholar 

  28. Achalpurkar M P, Kharul U K, Lohokare H R, et al. Gas permeation in amine functionalized silicon rubber membranes. Separation and Purification Reviews, 2007, 57(2): 304–313.

    Google Scholar 

  29. Muñoz D M, Maya E M, de Abajo J, et al. Thermal treatment of poly(ethylene oxide)-segmented copolyimide based membranes: An effective way to improve the gas separation properties. Journal of Membrane Science, 2008, 323(1): 53–59.

    Google Scholar 

  30. Xiao Y, Shao L, Chung T S, et al. Effects of thermal treatments and dendrimers chemical structures on the properties of highly surface crosslinked polyimide films. Ind. Eng. Industrial and Engineering Chemistry Research, 2005, 44(9): 3059–3067.

    Google Scholar 

  31. Liu L, Chakma A, Feng X. Preparation of hollow fiber poly(ether block amide)/polysulfone composite membranes for separation of carbon dioxide from nitrogen. Journal of Chemical Engineering, 2004, 105(1–2): 43–51.

    Google Scholar 

  32. Ji P, Cao Y, Jie X, et al. Impacts of coating condition on composite membrane performance for CO2 separation. Separation and Purification Reviews, 2010, 71(2): 160–167.

    Google Scholar 

  33. Du R, Chakma A, Feng X. Interfacially formed poly(N,Ndimethylaminoethyl methacrylate)/polysulfone composite membranes for CO2/N2 separation. Journal of Membrane Science, 2007, 290(1–2): 19–28.

    Google Scholar 

  34. Du J R, Liu L, Chakma A, et al. A study of gas transport through interfacially formed poly(N,N-dimethylaminoethyl methacrylate) membranes. Journal of Chemical Engineering, 2010, 156(1): 33–39.

    Google Scholar 

  35. Du R, Feng X, Chakma A. Poly(N,N-dimethylaminoethyl methacrylate)/polysulfone composite membranes for gas separations. Journal of Membrane Science, 2006, 279(1–2): 76–85.

    Google Scholar 

  36. Wallace D W, Staudt-Bickel C, Koros W J. Efficient development of effective hollow fiber membranes for gas separations from novel polymers. Journal of Membrane Science, 2006, 278(1–2): 92–104.

    Google Scholar 

  37. Ding X, Cao Y, Zhao H, et al. Fabrication of high performance Matrimid/polysulfone dual-layer hollow fiber membranes for O2/N2 separation. Journal of Membrane Science, 2008, 323(2): 352–361.

    Google Scholar 

  38. Liu R X, Qiao X Y, Chung T S. Dual-layer P84/polyethersulfone hollow fibers for pervaporation dehydration of isopropanol. Journal of Membrane Science, 2007, 294(1–2): 103–114.

    Google Scholar 

  39. Puri P S. Fabrication of hollow fibre gas separation membranes. Gas Separation and Purification, 1990. 4(1): 29–36.

    Google Scholar 

  40. Strathmann H. Membrane separation processes: Current relevance and future opportunities. AIChE Journal, 2001, 47(5): 1077–1087.

    Google Scholar 

  41. Li Y, Chung T S, Xiao Y. Superior gas separation performance of dual-layer hollow fiber membranes with an ultrathin dense-selective layer. Journal of Membrane Science, 2008, 325(1): 23–27.

    Google Scholar 

  42. Ji P, Cao Y, Zhao H, et al. Preparation of hollow fiber poly(N,Ndimethylaminoethyl methacrylate)-poly(ethylene glycol methyl ether methyl acrylate)/polysulfone composite membranes for CO2/N2 separation. Journal of Membrane Science, 2009, 342(1–2): 190–197.

    Google Scholar 

  43. Kouketsu T, Duan S, Kai T, et al. PAMAM dendrimer composite membrane for CO2 separation: Formation of a chitosan gutter layer. Journal of Membrane Science, 2007, 287(1): 51–59.

    Google Scholar 

  44. Nunes S P, Peinemann V. Membrane Technology in the Chemical Industry//Nunes S P, Peinemann V. Membrane Materials and Membrane Preparation. Weinheim: Wiley-VCH, 2001

    Google Scholar 

  45. Sridhar S, Veerapur R S, Patil M B, et al. Matrimid polyimide membranes for the separation of carbon dioxide from methane. Journal of Applied Polymer Science, 2007, 106(3): 1585–1594.

    Google Scholar 

  46. Tanaka K, Kita H, Okano M, et al. Permeability and permselectivity of gases in fluorinated and non-fluorinated polyimides. Polymer, 1992, 33(3): 585-592.

    Google Scholar 

  47. Kim T H, Koros W J, Husk G R, et al. Relationship between gas separation properties and chemical structure in a series of aromatic polyimides. Journal of Membrane Science, 1988, 37(1): 45–62.

    Google Scholar 

  48. Stern S A, Mi Y, Yamamoto H, et al. Structure/permeability relationships of polyimide membranes. Applications to the separation of gas mixtures. Journal of Polymer Science:Polymer Physics Edition, 1989, 27(9): 1887–1909.

    Google Scholar 

  49. Qin J J, Chung T S, Cao Y. Solvent selection for manufacture of fluorinated polyimide composite membranes. Desalination, 2006, 193(1–3): 8–13.

    Google Scholar 

  50. Aitken C L, Koros W J, Paul D R. Gas transport properties of biphenol polysulfones. Macromolecules, 1992, 25(14): 3651–3658.

    Google Scholar 

  51. Camacho-Zuñniga C, Ruiz-Treviñno F A, Hernández-López S, et al. Aromatic polysulfone copolymers for gas separation membrane applications. Journal of Membrane Science, 2009, 340(1–2): 221–226.

    Google Scholar 

  52. de Abajo J, de la Campa J G, Lozano A E. Designing aromatic polyamides and polyimides for gas separation membranes. Macromolecular Symposium, 2003, 199(1): 293–306.

    Google Scholar 

  53. Ulbricht M. Advanced functional polymer membranes. Polymer, 2006, 47(7): 2217–2262.

    Google Scholar 

  54. Espeso J, Lozano A E, de la Campa J G, et al. Effect of substituents on the permeation properties of polyamide membranes. Journal of Membrane Science, 2006, 280(1–2): 659–665.

    Google Scholar 

  55. Queiroz D P, Norberta de Pinho M. Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes. Polymer, 2005, 46(7): 2346–2353.

    Google Scholar 

  56. Jung C H, Lee J E, Han S H, et al. Highly permeable and selective poly(benzoxazole-co-imide) membranes for gas separation. Journal of Membrane Science, 2010, 350(1–2): 301–309.

    Google Scholar 

  57. Shao L, Chung T S, Goh S H, et al. Polyimide modification by a linear aliphatic diamine to enhance transport performance and plasticization resistance. Journal of Membrane Science, 2005, 256(1–2): 46–56.

    Google Scholar 

  58. Shao L, Chung TS, Goh SH, et al. the effects of 1, 3 — yclohexanebis(methylamine) modification on gas transport and plasticization resistance of polyimide membranes. Journal of Membrane Science, 2005, 267(1–2): 78–89.

    Google Scholar 

  59. Shao L, Liu L, Cheng S-X, et al. Comparison of diamino cross-linking in different polyimide solutions and membranes by precipitation observation and gas transport. Journal of Membrane Science, 2008, 312(1–2): 174-185.

    Google Scholar 

  60. Patel N P, Hunt M A, Lin-Gibson S, et al. Tunable CO2 transport through mixed polyether membranes. Journal of Membrane Science, 2005, 251(1–2): 51–57.

    Google Scholar 

  61. Senthilkumar U, Reddy B S R. Polysiloxanes with pendent bulky groups having amino-hydroxy functionality: Structure-permeability correlation. Journal of Membrane Science, 2007, 292(1–2): 72–79.

    Google Scholar 

  62. Powell C E, Duthie X J, Kentish S E, et al. Reversible diamine cross-linking of polyimide membranes. Journal of Membrane Science, 2007, 291(1–2): 199–209.

    Google Scholar 

  63. Ahn S H, Seo J A, Kim J H, et al. Synthesis and gas permeation properties of amphiphilic graft copolymer membranes. Journal of Membrane Science, 2009, 345(1–2): 128–133.

    Google Scholar 

  64. Hillock A M W, Koros W J. Cross-linkable polyimide membrane for natural gas purification and carbon dioxide plasticization reduction. Macromolecules, 2007, 40(3): 583–587.

    Google Scholar 

  65. Kusuma V A, Freeman B D, Smith S L, et al. Influence of TRIS-based co-monomer on structure and gas transport properties of cross-linked poly(ethylene oxide). Journal of Membrane Science, 2010, 359(1–2): 25–36.

    Google Scholar 

  66. Sridhar S, Aminabhavi T M, Ramakrishna M. Separation of binary mixtures of carbon dioxide and methane through sulfonated polycarbonate membranes. Journal of Applied Polymer Science, 2007, 105(4): 1749–1756.

    Google Scholar 

  67. Sridhar S, Smitha B, Ramakrishna M, et al. Modified poly(phenylene oxide) membranes for the separation of carbon dioxide from methane. Journal of Membrane Science, 2006, 280(1–2): 202–209.

    Google Scholar 

  68. Sen S K, Banerjee S. Gas transport properties of fluorinated poly(ether imide) films containing phthalimidine moiety in the main chain. Journal of Membrane Science, 2010, 350(1–2): 53–61.

    Google Scholar 

  69. Mousavi S A, Sadeghi M, Motamed-Hashemi M M Y, et al. Study of gas separation properties of ethylene vinyl acetate (EVA) copolymer membranes prepared via phase inversion method. Separation and Purification Reviews, 2008, 62(3): 642–647.

    Google Scholar 

  70. Wang Z, Li M, Cai Y, et al. Novel CO2 selectively permeating membranes containing PETEDA dendrimer. Journal of Membrane Science, 2007, 290(1–2): 250–258.

    Google Scholar 

  71. Taniguchi I, Duan S, Kazama S, et al. Facile fabrication of a novel high performance CO2 separation membrane: Immobilization of poly(amidoamine) dendrimers in poly(ethylene glycol) networks. Journal of Membrane Science, 2008, 322(2): 277–280.

    Google Scholar 

  72. Amooghin A E, Sanaeepur H, Moghadassi A, et al. Modification of ABS membrane by PEG for capturing carbon dioxide from CO2/N2 streams. Separation Sceince and Technology, 2010, 45(10): 1385–1394.

    Google Scholar 

  73. Sadeghi M, Pourafshari C M, Rahimian M, et al. Gas permeation properties of polyvinylchloride/polyethyleneglycol blend membranes. Journal of Applied Polymer Science, 2008, 110(2): 1093–1098.

    Google Scholar 

  74. Car A, Stropnik C, Yave W, et al. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation. Journal of Membrane Science, 2008, 307(1): 88–95.

    Google Scholar 

  75. Ismail A F, David L I B. A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science, 2001, 193(1): 1–18.

    Google Scholar 

  76. Fuertes A B, Centeno T A. Preparation of supported asymmetric carbon molecular sieve membranes. Journal of Membrane Science, 1998, 144(1–2): 105–111.

    Google Scholar 

  77. Bernardo P, Drioli E, Golemme G. Membrane gas separation: A review/ state of the art. Ind. Eng. Industrial and Engineering Chemistry Research, 2009, 48(10): 4638–4663.

    Google Scholar 

  78. Tarditi A M, Lombardo E A. Influence of exchanged cations (Na+, Cs+, Sr2+ and Ba2+) on xylene permeation through ZSM-5/SS tubular membranes. Separation Sceince and Technology, 2008, 61(2): 136–147.

    Google Scholar 

  79. Yang M, Crittenden B D, Perera S P, et al. the hindering effect of adsorbed components on the permeation of a non-adsorbing component through a microporous silicalite membrane: the potential barrier theory. Journal of Membrane Science, 1999, 156(1): 1–9.

    Google Scholar 

  80. Caro J, Noack M, Kölsch P, et al. Zeolite membranes — state of their development and perspective. Microporous and Mesoporous Matevials, 2000, 38(1): 3–24.

    Google Scholar 

  81. Poshusta J C, Tuan V A, Pape E A, et al. Separation of light gas mixtures using SAPO-34 membranes. AIChE Journal., 2000, 46(4): 779–789.

    Google Scholar 

  82. Keizer K, Burggraaf A J, Vroon Z A E P, et al. Two component permeation through thin zeolite MFI membranes. Journal of Membrane Science, 1998, 147(2): 159–172.

    Google Scholar 

  83. Lindmark J, Hedlund J. Carbon dioxide removal from synthesis gas using MFI membranes. Journal of Membrane Science, 2010, 360(1–2): 284–291.

    Google Scholar 

  84. Rouleau L, Pirngruber G, Guillou F, et al. Nanocomposite MFI-alumina and FAU-alumina membranes: Synthesis, characterization and application to paraffin separation and CO2 capture. Oil and Gas Science and Technology, 2009.

    Google Scholar 

  85. Li Y, Pera-Titus M, Xiong G, et al. Nanocomposite MFI-alumina membranes via pore-plugging synthesis: Genesis of the zeolite material. Journal of Membrane Science, 2008, 325(2): 973–981.

    Google Scholar 

  86. Alshebani A, Pera-Titus M, Landrivon E, et al. Nanocomposite MFIceramic Hollow fibres: Prospects for CO2 separation. Microporous and Mesoporous Materials, 2008, 115(1–2): 197–205.

    Google Scholar 

  87. Miachon S, Ciavarella P, van Dyk L, et al. Nanocomposite MFI-alumina membranes via pore-plugging synthesis: Specifi c transport and separation properties. Journal of Membrane Science, 2007, 298(1–2): 71–79.

    Google Scholar 

  88. Dong J, Lin Y S, Hu M Z C, et al. Template-removal-associated microstructural development of porous-ceramic-supported MFI zeolite membranes. Microporous and Mesoporous Materials, 2000, 34(3): 241–253.

    Google Scholar 

  89. Hedlund J, Jareman F, Bons A-J, et al. A masking technique for high quality MFI membranes. Microporous and Mesoporous Materials, 2003, 222(1–2): 163-179.

    Google Scholar 

  90. Geus E R, den Exter M J, van Bekkum H. Synthesis and characterization of zeolite (MFI) membranes on porous ceramic supports. Journal of the Chemical Society, Faraday, 1992, 88(20): 3101–3109.

    Google Scholar 

  91. Yin X, Zhu G, Yang W, et al. Stainless-steel-net-supported zeolite NaA membrane with high permeance and high permselectivity of oxygen over nitrogen. Advanced Matevials, 2005, 17(16): 2006–2010.

    Google Scholar 

  92. Tian Y, Fan L, Wang Z, et al. Synthesis of a SAPO-34 membrane on macroporous supports for high permeance separation of a CO2/CH4 mixture. Journal of Materials Chemistry, 2009, 19(41): 7698–7703.

    Google Scholar 

  93. Hedlund J, Sterte J, Anthonis M, et al. High-flux MFI membranes. Microporous and Mesoporous Materials, 2002, 52(3): 179–189.

    Google Scholar 

  94. Rouleau L, Pirngruber G, Guillou F, et al. Nanocomposite MFI-alumina and FAU-alumina membranes: Synthesis, characterization and application to paraffin separation and CO2 capture. Oil and Gas Science and Technology, 2009, 64(6): 745–758.

    Google Scholar 

  95. Lin Y S, Kumakiri I, Nair B N, et al. Microporous inorganic membranes. Separ Purif Method, 2002, 31(2): 229–379.

    Google Scholar 

  96. Miachon S, Landrivon E, Aouine M, et al. Nanocomposite MFI-alumina membranes via pore-plugging synthesis: Preparation and morphological characterisation. Journal of Membrane Science, 2006, 281(1–2): 228–238.

    Google Scholar 

  97. Huang A, Liang F, Steinbach F, et al. Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker. Journal of Membrane Science, 2010, 350(1–2): 5–9.

    Google Scholar 

  98. Lai Z, Bonilla G, Diaz I, et al. Microstructural optimization of a zeolite membrane for organic vapor separation. Science, 2003, 300(5618): 456–460.

    Google Scholar 

  99. Mintova S, Valtchev V, Engström V, et al. Growth of silicalite-1 films on gold substrates. Microporous Materials, 1997, 11(3–4): 149–160.

    Google Scholar 

  100. Shin D W, Hyun S H, Cho C H, et al. Synthesis and CO2/N2 gas permeation characteristics of ZSM-5 zeolite membranes. Micropporous and Mesoporous Materials, 2005, 85(3): 313–323.

    Google Scholar 

  101. Kanezashi M, O’Brien-Abraham Journal, Lin Y S, et al. Gas permeation through DDR-type zeolite membranes at high temperatures. AIChE J., 2008, 54(6): 1478–1486.

    Google Scholar 

  102. Kanezashi M, Lin Y S. Gas permeation and diffusion characteristics of MFI-type zeolite membranes at high temperatures. Journal of Physical Chemistry C, 2009, 113(9): 3767–3774.

    Google Scholar 

  103. Carreon M, Li S, Falconer J, et al. SAPO-34 seeds and membranes prepared using multiple structure directing agents. Advanced Materials, 2008, 20(4): 729–732.

    Google Scholar 

  104. Li S, Fan C Q. High-flux SAPO-34 membrane for CO2/N2 separation. Ind. Eng. Industrial and Engineering Chemistry Research, 2010, 49(9): 4399–4404.

    Google Scholar 

  105. Li S, Carreon M A, Zhang Y, et al. Scale-up of SAPO-34 membranes for CO2/CH4 separation. Journal of Membrane Science, 2010, 352(1–2): 7–13.

    Google Scholar 

  106. Suzuki H. Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and process for production thereof. US Patent. 1987.

    Google Scholar 

  107. International Zeolite Association. http://izasc.ethz.ch/fmi/xsl/IZA-SC/ft.xsl.

    Google Scholar 

  108. White J C, Dutta P K, Shqau K, et al. Synthesis of ultrathin zeolite Y membranes and their application for separation of carbon dioxide and nitrogen gases. Langmuir, 2010, 26(12): 10287–10293.

    Google Scholar 

  109. Kusakabe K, Kuroda T, Uchino K, et al. Gas permeation properties of ionexchanged faujasite-type zeolite membranes. AIChE Journal, 1999, 45(6): 1220–1226.

    Google Scholar 

  110. Kusakabe K, Kuroda T, Morooka S. Separation of carbon dioxide from nitrogen using ion-exchanged faujasite-type zeolite membranes formed on porous support tubes. Journal of Membrane Science, 1998, 148(1): 13–23.

    Google Scholar 

  111. Hasegawa Y, Kusakabe K, Morooka S. Effect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube. Chemical Engineering Journal, 2001, 56(14): 4273–4281.

    Google Scholar 

  112. Kusakabe K, Kuroda T, Murata A, et al. Formation of a Y-type zeolite membrane on a porous a-alumina tube for gas separation. Industrial and Engineering Chemistry Research, 1997, 36(3): 649–655.

    Google Scholar 

  113. Hasegawa Y, Watanabe K, Kusakabe K, et al. The separation of CO2 using Y-type zeolite membranes ion-exchanged with alkali metal cations. Separation and Purification Reviews, 2001, 22–23: 319–325.

    Google Scholar 

  114. Hasegawa Y, Watanabe K, Kusakabe K, et al. Influence of alkali cations on permeation properties of Y-type zeolite membranes. Journal of Membrane Science, 2002, 208(1–2): 415–418.

    Google Scholar 

  115. Gu X, Dong J, Nenoff T M. Synthesis of defect-free FAU-type zeolite membranes and separation for dry and moist CO2/N2 mixtures. Industrial and Engineering Chemistry Research, 2005, 44(4): 937–944.

    Google Scholar 

  116. Cheng Z, Gao E, Wan H. Novel synthesis of FAU-type zeolite membrane with high performance. Chemical Communications, 2004(15): 1718–1719.

    Google Scholar 

  117. Seike T, Matsuda M, Miyake M. Preparation of FAU type zeolite membranes by electrophoretic deposition and their separation properties. Journal of Materials Chemistry, 2002, 12(2): 366–368.

    Google Scholar 

  118. Guillou F, Rouleau L, Pirngruber G, et al. Synthesis of FAU-type zeolite membrane: An original in situ process focusing on the rheological control of gel-like precursor species. Microporous and Mesoporous Materials, 2009, 119(1–3): 1–8.

    Google Scholar 

  119. Sebastián V, Kumakiri I, Bredesen R, et al. Zeolite membrane for CO2 removal: Operating at high pressure. Journal of Membrane Science, 2007, 292(1–2): 92–97.

    Google Scholar 

  120. Poshusta J C, Noble R D, Falconer J L. Temperature and pressure effects on CO2 and CH4 permeation through MFI zeolite membranes. Journal of Membrane Science, 1999, 160(1): 115–125.

    Google Scholar 

  121. Gies H. Studies on clathrasils: VII. A new clathrate compound of silica: Synthesis, crystallographic, and thermal properties. J. Incl. Phenom. Macro., 1984, 2(1): 275–278.

    Google Scholar 

  122. Himeno S, Tomita T, Suzuki K, et al. Synthesis and permeation properties of a DDR-type zeolite membrane for separation of CO2/CH4 gaseous mixtures. Industrial and Engineering Chemistry Research, 2007, 46(21): 6989–6997.

    Google Scholar 

  123. Tomita T, Nakayama K, Sakai H. Gas separation characteristics of DDR type zeolite membrane. Microporous and Mesoporous Materials, 2004, 68(1—3): 71–75.

    Google Scholar 

  124. van den Bergh J, Tihaya A, Kapteijn F. High temperature permeation and separation characteristics of an all-silica DDR zeolite membrane. Microporous and Mesoporous Materials, 2010, 132(1–2): 137–147.

    Google Scholar 

  125. van den Bergh J, Zhu W, Gascon J, et al. Separation and permeation characteristics of a DD3R zeolite membrane. Journal of Membrane Science, 2008, 316(1–2): 35–45.

    Google Scholar 

  126. van den Bergh J, Zhu W, Kapteijn F, et al. Separation of CO2 and CH4 by a DDR membrane. Research on Chemical Intermediates, 2008, 34: 467–474.

    Google Scholar 

  127. Szostak R. Molecular Sieves — Principles of Synthesis and Identification. New York: Van Nostrand Reinhold, 1989

    Google Scholar 

  128. Li S, Falconer J L, Noble R D. SAPO-34 membranes for CO2/CH4 separations: Effect of Si/Al ratio. Microporous and Mesoporous Materials, 2008, 110(2–3): 310–317.

    Google Scholar 

  129. Li S, Martinek J G, Falconer J L, et al. High-pressure CO2/CH4 separation using SAPO-34 membranes. Industrial and Engineering Chemistry Research, 2005, 44(9): 3220–3228.

    Google Scholar 

  130. Li S, Alvarado G, Noble R D, et al. Improved SAPO-34 membranes for CO2/CH4 separations. Advanced Materials, 2006, 18: 2601–2603.

    Google Scholar 

  131. Hong M, Li S, Funke H F, et al. Ion-exchanged SAPO-34 membranes for light gas separations. Microporous and Mesoporous Materials, 2007, 106(1–3): 140–146.

    Google Scholar 

  132. Cui Y, Kita H, Okamoto K-i. Preparation and gas separation performance of zeolite T membrane. Journal of Materials Chemistry, 2004, 14(5): 924–932.

    Google Scholar 

  133. Tiscornia I, Irusta S, Téllez C, et al. Separation of propylene/propane mixtures by titanosilicate ETS-10 membranes prepared in one-step seeded hydrothermal synthesis. Journal of Membrane Science, 2008, 311(1–2): 326–335.

    Google Scholar 

  134. Tiscornia I, Irusta S, Prádanos P, et al. Preparation and characterization of titanosilicate Ag-ETS-10 for propylene and propane adsorption. Journal of Physical Chemistry C, 2007, 111(12): 4702–4709.

    Google Scholar 

  135. Tiscornia I, Kumakiri I, Bredesen R, et al. Microporous titanosilicate ETS-10 membrane for high pressure CO2 separation. Separation and Purification Reviews, 2010, 73(1): 8–12.

    Google Scholar 

  136. Poshusta J C, Noble R D, Falconer J L. Characterization of SAPO-34 membranes by water adsorption. Journal of Membrane Science, 2001, 186: 25–40.

    Google Scholar 

  137. Li S, Alvarado G, Noble R D, et al. Effects of impurities on CO2/CH4 separations through SAPO-34 membranes. Journal of Membrane Science, 2005, 251(1–2): 59–66.

    Google Scholar 

  138. Ash R, Barrer R M, Lowson R T. Transport of single gases and of binary gas mixtures in a microporous carbon membrane. Journal of the Chemical Society, Faraday Transactions, 1973, 69: 2166–2178.

    Google Scholar 

  139. Koresh J E, Sofer A. Molecular sieve carbon permselective membrane. Part I. Presentation of a new device for gas mixture separation. Separation Sceince and Technology, 1983, 18(8): 723–734.

    Google Scholar 

  140. Koresh J E, Soffer A. Mechanism of permeation through molecular-sieve carbon membrane. Part 1.-the effect of adsorption and the dependence on pressure. Journal of the Chemical Society, Faraday Transactions, 1986, 82(7): 2057–2063.

    Google Scholar 

  141. Koresh J E, Soffer A. The carbon molecular sieve membranes. General properties and the permeability of CH4/H2 mixture. Separation Sceince and Technology, 1987, 22(2): 973–982.

    Google Scholar 

  142. Wei W, Qin G, Hu H, et al. Preparation of supported carbon molecular sieve membrane from novolac phenol-formaldehyde resin. Journal of Membrane Science, 2007, 303(1–2): 80–85.

    Google Scholar 

  143. Lagorsse S, Leite A, Magalhães F D, et al. Novel carbon molecular sieve honeycomb membrane module: Configuration and membrane characterization. Carbon, 2005, 43(4): 809–819.

    Google Scholar 

  144. Saufi S M, Ismail A F. Fabrication of carbon membranes for gas separation-A review. Carbon, 2004, 42(2): 241–259.

    Google Scholar 

  145. Barsema J N, van der Vegt N F A, Koops G H, et al. Carbon molecular sieve membranes prepared from porous fiber precursor. Journal of Membrane Science, 2002, 205(1–2): 239–246.

    Google Scholar 

  146. Xiao Y, Dai Y, Chung T S, et al. Effects of brominating matrimid polyimide on the physical and gas transport properties of derived carbon membranes. Macromolecules, 2005, 38(24): 10042–10049.

    Google Scholar 

  147. Shao L, Chung T S, Pramoda K P. the evolution of physicochemical and transport properties of 6FDA-durene toward carbon membranes; from polymer, intermediate to carbon. Microporous and Mesoporous Materials, 2005, 84(1–3): 59–68.

    Google Scholar 

  148. Anderson C J, Pas S J, Arora G, et al. Effect of pyrolysis temperature and operating temperature on the performance of nanoporous carbon membranes. Journal of Membrane Science, 2008, 322(1): 19–27.

    Google Scholar 

  149. Lua A C, Su J. Effects of carbonisation on pore evolution and gas permeation properties of carbon membranes from Kapton® polyimide. Carbon, 2006, 44(14): 2964–2972.

    Google Scholar 

  150. Su J, Lua A C. Effects of carbonisation atmosphere on the structural characteristics and transport properties of carbon membranes prepared from Kapton® polyimide. Journal of Membrane Science, 2007, 305(1–2): 263–270.

    Google Scholar 

  151. Zhang B, Shen G, Wu Y, et al. Preparation and characterization of carbon membranes derived from poly(phthalazinone ether sulfone) for gas separation. Ind. Eng. Industrial and Engineering Chemistry Research, 2009, 48(6): 2886–2890.

    Google Scholar 

  152. Lee H J, Yoshimune M, Suda H, et al. Gas permeation properties of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) derived carbon membranes prepared on a tubular ceramic support. Journal of Membrane Science, 2006, 279(1–2): 372–379.

    Google Scholar 

  153. Strano M S, Foley H C. Synthesis and characterization of heteropolyacid nanoporous carbon membranes. Catalysis Letters, 2001, 74(3): 177–184.

    Google Scholar 

  154. Kita H, Yoshino M, Tanaka K, et al. Gas permselectivity of carbonized polypyrrolone membrane. Chemical Communications, 1997(11): 1051–1052.

    Google Scholar 

  155. Kita H, Nanbu K, Hamano T, et al. Carbon molecular sieving membranes serived from lignin-based materials. Journaal of Polymers and the Environment, 2002, 10(3): 69–75.

    Google Scholar 

  156. Kusakabe K, Gohgi S, Morooka S. Carbon molecular sieving membranes derived from condensed polynuclear aromatic (COPNA) resins for gas separations. Industrial and Engineering Chemistry Research, 1998, 37(11): 4262–4266.

    Google Scholar 

  157. Nishiyama N, Dong Y R, Zheng T, et al. Tertiary amine-mediated synthesis of microporous carbon membranes. Journal of Membrane Science, 2006, 280(1–2): 603–609.

    Google Scholar 

  158. Xiao Y, Chng M L, Chung T S, et al. Asymmetric structure and enhanced gas separation performance induced by in situ growth of silver nanoparticles in carbon membranes. Carbon, 2010, 48(2): 408–416.

    Google Scholar 

  159. Fuertes A B, Nevskaia D M, Centeno T A. Carbon composite membranes from Matrimid® and Kapton® polyimides for gas separation. Microporous and Mesoporous Materials, 1999, 33(1–3): 115–125.

    Google Scholar 

  160. Park H B, Kim Y K, Lee J M, et al. Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes. Journal of Membrane Science, 2004, 229(1–2): 117–127.

    Google Scholar 

  161. Tin P S, Chung T S, Liu Y, et al. Separation of CO2/CH4 through carbon molecular sieve membranes derived from P84 polyimide. Carbon, 2004, 42(15): 3123–3131.

    Google Scholar 

  162. Tin P S, Chung T S, Hill A J. Advanced fabrication of carbon molecular sieve membranes by nonsolvent pretreatment of precursor polymers. Ind. Eng. Industrial and Engineering Chemistry Research, 2004, 43(20): 6476–6483.

    Google Scholar 

  163. Tin P S, Chung T S, Kawi S, et al. Novel approaches to fabricate carbon molecular sieve membranes based on chemical modified and solvent treated polyimides. Microporous and Mesoporous Materials, 2004, 73(3): 151–160.

    Google Scholar 

  164. Kusuki Y, Shimazaki H, Tanihara N, et al. Gas permeation properties and characterization of asymmetric carbon membranes prepared by pyrolyzing asymmetric polyimide hollow fiber membrane. Journal of Membrane Science, 1997, 134(2): 245–253.

    Google Scholar 

  165. Okamoto K, Kawamura S, Yoshino M, et al. Olefin/paraffin separation through carbonized membranes derived from an asymmetric polyimide hollow fiber membrane. Industrial and Engineering Chemistry Research, 1999, 38(11): 4424–4432.

    Google Scholar 

  166. Kai T, Kazama S, Fujioka Y. Development of cesium-incorporated carbon membranes for CO2 separation under humid conditions. Journal of Membrane Science, 2009, 342(1–2): 14–21.

    Google Scholar 

  167. Lie J A, Hägg M B. Carbon membranes from cellulose and metal loaded cellulose. Carbon, 2005, 43(12): 2600–2607.

    Google Scholar 

  168. Lie J A, Hägg M B. Carbon membranes from cellulose: Synthesis, performance and regeneration. Journal of Membrane Science, 2006, 284(1–2): 79–86.

    Google Scholar 

  169. Zhou W, Yoshino M, Kita H, et al. Carbon molecular sieve membranes derived from phenolic resin with a pendant sulfonic acid group. Industrial and Engineering Chemistry Research, 2001, 40(22): 4801–4807.

    Google Scholar 

  170. Liu Q, Wang T, Liang C, et al. Zeolite married to carbon:A new family of membrane materials with excellent gas separation performance. Journal of Materials Chemistry, 2006, 18(26): 6283–6288.

    Google Scholar 

  171. Rao P S, Wey M Y, Tseng H H, et al. A comparison of carbon/nanotube molecular sieve membranes with polymer blend carbon molecular sieve membranes for the gas permeation application. Microporous and Mesoporous Materials, 2008, 113(1–3): 499–510.

    Google Scholar 

  172. Zhang X, Hu H, Zhu Y, et al. Carbon molecular sieve membranes derived from phenol formaldehyde novolac resin blended with poly(ethylene glycol). Journal of Membrane Science, 2007, 289(1–2): 86–91.

    Google Scholar 

  173. Zhang X, Hu H, Zhu Y, et al. Effect of carbon molecular sieve on phenol formaldehyde novolac resin based carbon membranes. Separation and Purifi cation Reviews, 2006, 52(2): 261–265.

    Google Scholar 

  174. Zhang B, Wang T, Zhang S, et al. Preparation and characterization of carbon membranes made from poly(phthalazinone ether sulfone ketone). Carbon, 2006, 44(13): 2764–2769.

    Google Scholar 

  175. Zhang B, Wang T, Wu Y, et al. Preparation and gas permeation of composite carbon membranes from poly(phthalazinone ether sulfone ketone). Separation and Purification Reviews, 2008, 60(3): 259–263.

    MathSciNet  Google Scholar 

  176. Lee H J, Suda H, Haraya K. Preparation of carbon membranes derived from polymer blends in the presence of a thermally labile polymer. Separation Sceince and Technology, 2007, 42(1): 59–71.

    Google Scholar 

  177. Zhou Z, Yang J, Zhang Y, et al. NaA zeolite/carbon nanocomposite thin films with high permeance for CO2/N2 separation. Separation and Purification Reviews, 2007, 55(3): 392–395.

    Google Scholar 

  178. Zhou Z H, Yang J H, Chang L F, et al. Novel preparation of NaA/carbon nanocomposite thin films with high permeance for CO2/CH4 separation. Chinese Chemical Letters, 2007, 18(4): 455–457.

    Google Scholar 

  179. Zeng C, Zhang L, Cheng X, et al. Preparation and gas permeation of nanosized zeolite NaA-filled carbon membranes. Separation and Purification Reviews, 2008, 63(3): 628–633.

    Google Scholar 

  180. Yin X, Wang J, Chu N, et al. Zeolite L/carbon nanocomposite membranes on the porous alumina tubes and their gas separation properties. Journal of Membrane Science, 2010, 348(1–2): 181–189.

    Google Scholar 

  181. Jian X G, Dai Y, Zeng L, et al. Application of poly(phthalazinone ether sulfone ketone)s to gas membrane separation. Journal of Applied Polymer Science, 1999, 71(14): 2385–2390.

    Google Scholar 

  182. Tavolaro A, Drioli E. Zeolite membranes. Advanced Materials, 1999, 11(12): 975–996.

    Google Scholar 

  183. Bonhomme F, Welk M E, Nenoff T M. CO2 selectivity and lifetimes of high silica ZSM-5 membranes. Microporous and Mesoporous Materials, 2003, 66(2–3): 181–188.

    Google Scholar 

  184. Merkel T C, Freeman B D, Spontak R J, et al. Ultrapermeable, reverseselective nanocomposite membranes. Science, 2002, 296(5567): 519–522.

    Google Scholar 

  185. Defontaine G, Barichard A, Letaief S, et al. Nanoporous polymer — clay hybrid membranes for gas separation. Journal of Colloid and Interface Science, 2010, 343(2): 622–627.

    Google Scholar 

  186. Paul D R, Kemp D R. Diffusion time lag in polymer membraens containing adsorptive fillers. Journal of Polymer Science:Polymer Physics Edition, 1973(41): 79–93.

    Google Scholar 

  187. Kulprathipanja S, Neuzil R W, Li N N. Separation of gases by means of mixed matrix membranes, U. Patent, 1992.

    Google Scholar 

  188. Duval J M, Folkers B, Mulder M H V, et al. Adsorbent filled membranes for gas separation. Part 1. Improvement of the gas separation properties of polymeric membranes by incorporation of microporous adsorbents. Journal of Membrane Science, 1993, 80(1): 189–198.

    Google Scholar 

  189. Jia M, Peinemann K V, Behling R D. Molecular sieving effect of the zeolitefilled silicone rubber membranes in gas permeation. Journal of Membrane Science, 1991, 57(2–3): 289–292.

    Google Scholar 

  190. Süer M G, Baç N, Yilmaz L. Gas permeation characteristics of polymerzeolite mixed matrix membranes. Journal of Membrane Science, 1994, 91(1–2): 77–86.

    Google Scholar 

  191. Pechar T W, Kim S, Vaughan B, et al. Preparation and characterization of a poly(imide siloxane) and zeolite L mixed matrix membrane. Journal of Membrane Science, 2006, 277(1–2): 210–218.

    Google Scholar 

  192. Yong H H, Park H C, Kang Y S, et al. Zeolite-filled polyimide membrane containing 2,4,6-triaminopyrimidine. Journal of Membrane Science, 2001, 188(2): 151–163.

    Google Scholar 

  193. Jeong H-K, Krych W, Ramanan H, et al. Fabrication of polymer/selectiveflake nanocomposite membranes and their use in gas separation. Journal of Materials Chemistry, 2004, 16(20): 3838–3845.

    Google Scholar 

  194. Tantekin-Ersolmaz S B, Atalay-Oral Ç, TatlIer M, et al. Effect of zeolite particle size on the performance of polymer-zeolite mixed matrix membranes. Journal of Membrane Science, 2000, 175(2): 285–288.

    Google Scholar 

  195. Huang Z, Li Y, Wen R, et al. Enhanced gas separation properties by using nanostructured PES-zeolite 4A mixed matrix membranes. Journal of Applied Polymer Science, 2006, 101(6): 3800–3805.

    Google Scholar 

  196. Cong H, Radosz M, Towler B F, et al. Polymer-inorganic nanocomposite membranes for gas separation. Separation and Purification Reviews, 2007, 55(3): 281–291.

    Google Scholar 

  197. Wang H, Holmberg B A, Yan Y. Homogeneous polymer-zeolite nanocomposite membranes by incorporating dispersible template-removed zeolite nanocrystals. Journal of Materials Chemistry, 2002, 12(12): 3640–3643.

    Google Scholar 

  198. Choi S, Coronas J, Lai Z, et al. Fabrication and gas separation properties of polybenzimidazole (PBI)/nanoporous silicates hybrid membranes. Journal of Membrane Science, 2008, 316(1–2): 145–152.

    Google Scholar 

  199. Choi S, Coronas J, Jordan E, et al. Layered silicates by swelling of AMH-3 and nanocomposite membranes. Angewandte Chemie-International Edition, 2008, 47(3): 552–555.

    Google Scholar 

  200. Maheshwari S, Jordan E, Kumar S, et al. Layer structure preservation during swelling, pillaring, and exfoliation of a zeolite precursor. Journal of The American Chemical Society, 2008, 130(4): 1507–1516.

    Google Scholar 

  201. Guseva O, Gusev A A. Finite element assessment of the potential of platelet-filled polymers for membrane gas separations. Journal of Membrane Science, 2008, 325(1): 125–129.

    Google Scholar 

  202. Clarizia G, Algieri C, Drioli E. Filler-polymer combination: A route to modify gas transport properties of a polymeric membrane. Polymer, 2004, 45(16): 5671–5681.

    Google Scholar 

  203. Moore T T, Koros W J. Non-ideal effects in organic-inorganic materials for gas separation membranes. Journal of Motecnlar Structure, 2005, 739(1–3): 87–98.

    Google Scholar 

  204. Mahajan R, Burns R, Schaeffer M, et al. Challenges in forming successful mixed matrix membranes with rigid polymeric materials. Journal of Applied Polymer Science, 2002, 86(4): 881–890.

    Google Scholar 

  205. Mahajan R, Koros W J. Mixed matrix membrane materials with glassy polymers. Part 1. Polymer Engineering and Science, 2002, 42(7): 1420–1431.

    Google Scholar 

  206. Ismail A F, Kusworo T D, Mustafa A. Enhanced gas permeation performance of polyethersulfone mixed matrix hollow fiber membranes using novel Dynasylan Ameo silane agent. Journal of Membrane Science, 2008, 319(1–2): 306–312.

    Google Scholar 

  207. Duval J M, Kemperman A J B, Folkers B, et al. Preparation of zeolite filled glassy polymer membranes. Journal of Applied Polymer Science, 1994, 54(4): 409–418.

    Google Scholar 

  208. Mahajan R, Koros W J. Mixed matrix membrane materials with glassy polymers. Part 2. Polymer Engineering and Science, 2002, 42(7): 1432–1441.

    Google Scholar 

  209. Husain S, Koros W J. Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. Journal of Membrane Science, 2007, 288(1–2): 195–207.

    Google Scholar 

  210. Vankelecom I F J, Van den broeck S, Merckx E, et al. Silylation to improve incorporation of zolites in polyimide films. Journal of Physical Chemistry, 1996, 100(9): 3753–3758.

    Google Scholar 

  211. Pechar T W, Kim S, Vaughan B, et al. Fabrication and characterization of polyimide-zeolite L mixed matrix membranes for gas separations. Journal of Membrane Science, 2006, 277(1–2): 195–202.

    Google Scholar 

  212. Li Y, Guan H M, Chung T S, et al. Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)-zeolite A mixed matrix membranes. Journal of Membrane Science, 2006, 275(1–2): 17–28.

    Google Scholar 

  213. Li W, Wang X, Chen Z, et al. Carbon nanotube film by filtration as cathode catalyst support for proton-exchange membrane fuel cell. Langmuir, 2005, 21(21): 9386–9389.

    Google Scholar 

  214. Bae T H, Liu J, Lee J S, et al. Facile high-yield solvothermal deposition of inorganic nanostructures on zeolite crystals for mixed matrix membrane fabrication. Journal of the American Chemical Society, 2009, 131(41): 14662–14663.

    Google Scholar 

  215. Hudiono Y C, Carlisle T K, Bara J E, et al. A three-component mixed-matrix membrane with enhanced CO2 separation properties based on zeolites and ionic liquid materials. Journal of Membrane Science, 2010, 350(1–2): 117–123.

    Google Scholar 

  216. Vu D Q, Koros W J, Miller S J. Mixed matrix membranes using carbon molecular sieves: I. Preparation and experimental results. Journal of Membrane Science, 2003, 211(2): 311–334.

    Google Scholar 

  217. Marchese J, Anson M, Ochoa N A, et al. Morphology and structure of ABS membranes filled with two different activated carbons. Journal of Chemical Engineering, 2006, 61(16): 5448–5454.

    Google Scholar 

  218. Sridhar S, Smitha B, Suryamurali R, et al. Synthesis, characterization and gas permeability of an activated carbon-loaded PEBAX 2533 membrane. Designed Monomers and Polymers, 2008, 11: 17–27.

    Google Scholar 

  219. Chung T S, Chan S S, Wang R, et al. Characterization of permeability and sorption in Matrimid/C60 mixed matrix membranes. Journal of Membrane Science, 2003, 211(1): 91–99.

    Google Scholar 

  220. Skoulidas A I, Ackerman D M, Johnson J K, et al. Rapid transport of gases in carbon nanotubes. Physical Review Letters, 2002, 89(18): 185901.

    Google Scholar 

  221. Sokhan V P, Nicholson D, Quirke N. Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes. Journal of Membrane Science, 2002, 117: 8531–8540.

    Google Scholar 

  222. Chen H, Johnson J K, Sholl D S. Transport diffusion of gases Is rapid in fl exible carbon nanotubes. Journal of Physical Chemistry. B, 2006, 110(5): 1971–1975.

    Google Scholar 

  223. Sholl D S, Johnson J K. Making high-flux membranes with carbon nanotubes. Science, 2006, 312(5776): 1003–1004.

    Google Scholar 

  224. Verweij H, Schillo M, Li J. Fast mass transport through carbon nanotube membranes. Small, 2007, 3(12): 1996–2004.

    Google Scholar 

  225. Mi W, Lin Y S, Li Y. Vertically aligned carbon nanotube membranes on macroporous alumina supports. Journal of Membrane Science, 2007, 304(1–2): 1–7.

    Google Scholar 

  226. Liu T, Tong Y, Zhang W D. Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films. Compos. Sci. Technol., 2007, 67(3–4): 406–412.

    Google Scholar 

  227. Kim S, Jinschek J R, Chen H, et al. Scalable fabrication of carbon nanotube/polymer nanocomposite membranes for high flux gas transport. Nano Letters, 2007, 7(9): 2806–2811.

    Google Scholar 

  228. Kim S, Pechar T W, Marand E. Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation. Desalination, 2006, 192(1–3): 330–339.

    Google Scholar 

  229. Hu X, Cong H, Shen Y, et al. Nanocomposite membranes for CO2 separations: Silica/brominated poly(phenylene oxide). Industrial and Engineering Chemistry Research, 2007, 46(5): 1547–1551.

    Google Scholar 

  230. Murali R S, Sridhar S, Sankarshana T, et al. Gas permeation behavior of Pebax-1657 nanocomposite membrane incorporated with multiwalled carbon nanotubes. Industrial and Engineering Chemistry Research, 2010, 49(14): 6530–6538.

    Google Scholar 

  231. Sadeghi M, Semsarzadeh M A, Moadel H. Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nano particles. Journal of Membrane Science, 2009, 331(1–2): 21–30.

    Google Scholar 

  232. Moaddeb M, Koros W J. Effects of colloidal silica incorporation on oxygen/nitrogen separation properties of ceramic-supported 6FDA-IPDA thin films. Journal of Membrane Science, 1996, 111(2): 283–290.

    Google Scholar 

  233. Moaddeb M, Koros W J. Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. Journal of Membrane Science, 1997, 125(1): 143–163.

    Google Scholar 

  234. Kusakabe K, Ichiki K, Hayashi Ji, et al. Preparation and characterization of silica—polyimide composite membranes coated on porous tubes for CO2 separation. Journal of Membrane Science, 1996, 115(1): 65–75.

    Google Scholar 

  235. Kim J H, Lee Y M. Gas permeation properties of poly(amide-6-b-ethylene oxide)-silica hybrid membranes. Journal of Membrane Science, 2001, 193(2): 209–225.

    Google Scholar 

  236. Joly C, Goizet S, Schrotter J C, et al. Sol-gel polyimide-silica composite membrane: Gas transport properties. Journal of Membrane Science, 1997, 130(1–2): 63–74.

    Google Scholar 

  237. Ahn J, Chung W J, Pinnau I, et al. Polysulfone/silica nanoparticle mixedmatrix membranes for gas separation. Journal of Membrane Science, 2008, 314(1-2): 123–133.

    Google Scholar 

  238. Cong H, Hu X, Radosz M, et al. Brominated poly(2,6-diphenyl-1,4-phenylene oxide) and its silica nanocomposite membranes for gas separation. ndustrial and Engineering Chemistry Research, 2007, 46(8): 2567–2575.

    Google Scholar 

  239. Zornoza B, Irusta S, Téllez C, et al. Mesoporous silica sphere—Polysulfone mixed matrix membranes for gas separation. Langmuir, 2009, 25(10): 5903–5909.

    Google Scholar 

  240. Kumar D, Schumacher K, du Fresne von Hohenesche C, et al. MCM-41, MCM-48 and related mesoporous adsorbents: Their synthesis and characterisation. Colloid Surface A, 2001, 187–188: 109–116.

    Google Scholar 

  241. Reid B D, Ruiz-Trevino F A, Musselman I H, et al. Gas permeability properties of polysulfone membranes containing the mesoporous molecular sieve MCM-41. Journal of Materials Chemistry, 2001, 13(7): 2366–2373.

    Google Scholar 

  242. Kim S, Marand E, Ida J, et al. Polysulfone and mesoporous molecular sieve MCM-48 mixed matrix membranes for gas separation. Journal of Materials Chemistry, 2006, 18(5): 1149–1155.

    Google Scholar 

  243. Kim S, Marand E. High permeability nano-composite membranes based on mesoporous MCM-41 nanoparticles in a polysulfone matrix. Microporous and Mesoporous Materials, 2008, 114(1–3): 129–136.

    Google Scholar 

  244. Li G, Wang L, Ni H, et al. Polyhedral oligomeric silsesquioxane (POSS) polymers and copolymers: A review. Journal of Inorganic and Organometallic Polymers, 2001, 11(3): 123–154.

    Google Scholar 

  245. Li F, Li Y, Chung T S, et al. Facilitated transport by hybrid POSS®-Matrimid®-Zn2+ nanocomposite membranes for the separation of natural gas. Journal of Membrane Science, 2010. 356(1–2): 14–21.

    Google Scholar 

  246. Iyer P, Iyer G, Coleman M. Gas transport properties of polyimide-POSS nanocomposites. Journal of Membrane Science, 2010, 358(1–2): 26–32.

    Google Scholar 

  247. Hosseini S S, Li Y, Chung T S, et al. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. Journal of Membrane Science, 2007, 302(1–2): 207–217.

    Google Scholar 

  248. Matteucci S, Kusuma V A, Kelman S D, et al. Gas transport properties of MgO filled poly(1-trimethylsilyl-1-propyne) nanocomposites. Polymer, 2008, 49(6): 1659–1675.

    Google Scholar 

  249. Sridhar S, Aminabhavi T M, Mayor S J, et al. Permeation of carbon dioxide and methane gases through novel silver-incorporated thin film composite Pebax membranes. Industrial and Engineering Chemistry Research, 2007, 46(24): 8144–8151.

    Google Scholar 

  250. Weng T H, Tseng H H, Wey M Y. Fabrication and characterization of poly(phenylene oxide)/SBA-15/carbon molecule sieve multilayer mixed matrix membrane for gas separation. International Journal of Hydrogen Energy, 2010, 35(13): 6971–6983.

    Google Scholar 

  251. Scovazzo P, Kieft J, Finan D A, et al. Gas separations using nonhexafluorophosphate [PF6]-anion supported ionic liquid membranes. Journal of Membrane Science, 2004, 238(1–2): 57–63.

    Google Scholar 

  252. Camper D, Bara J, Koval C, et al. Bulk-fluid solubility and membrane feasibility of rmim-based room-temperature ionic liquids. Industrial and Engineering Chemistry Research, 2006, 45(18): 6279–6283.

    Google Scholar 

  253. Ferguson L, Scovazzo P. Solubility, diffusivity, and permeability of hases in phosphonium-nased toom temperature ionic liquids: Data and correlations. Industrial and Engineering Chemistry Research, 2007, 46(4): 1369–1374.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Li, D., Yao, J., Wang, H. (2013). CO2 Selective Separation Membranes. In: Zhou, Y. (eds) Eco- and Renewable Energy Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33497-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33497-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33496-2

  • Online ISBN: 978-3-642-33497-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics