Skip to main content

The Application of Metal-Organic Frameworks to CO2 Capture

  • Chapter

Abstract

Metal-organic frameworks (MOFs), composed of organic bridging ligands coordinated to metal-based nodes, are new materials that have similar topological structure with zeolites. MOFs have large surface areas, adjustable pore sizes and controllable surface properties. Such unique properties make them very promising materials for gas selectivity and separation. This paper is mainly focused the progress on CO2 capture using MOFs in the last five years from the ranges of thinlayer membrane to powder adsorbents.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Eddaoudi M, Moler D B, Li H L, et al. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metalorganic carboxylate frameworks. Aocounts of Chemical Research, 2001, 34(4): 319–330.

    Article  Google Scholar 

  2. Yaghi O M, O’Keeffe M, Ockwig N W, et al. Reticular synthesis and the design of new materials. Nature, 2003, 423 (6941): 705–714.

    Article  Google Scholar 

  3. D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie-International Edition, 2010, 49 (35): 6058–6082.

    Article  Google Scholar 

  4. O’Keeffe M, Peskov M A, Ramsden S J, et al. the reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Aocounts of Chemical Research, 2008, 41 (12): 1782–1789.

    Article  Google Scholar 

  5. Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. Angewandte Chemie-International Edition, 2004, 43 (18): 2334–2375.

    Article  Google Scholar 

  6. Ma S Q, Zhou H C. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. Journal of the American Chemical Society, 2006, 128 (36): 11734–11735.

    Article  Google Scholar 

  7. Ranjan R, Tsapatsis M. Microporous metal organic framework membrane on porous support using the seeded growth method. Chemistry of Materials, 2009, 21 (20): 4920–4924.

    Article  Google Scholar 

  8. Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 2009, 38 (5): 1477–1504.

    Article  Google Scholar 

  9. Ebner A D, Ritter J A. State-of-the-art adsorption and membrane separation processes for carbon dioxide production from carbon dioxide emitting industries. Separation Science and Technology, 2009, 44 (6): 1273–1421.

    Article  Google Scholar 

  10. Keskin S, van Heest T M, Sholl D S. Can metal-organic framework materials play a useful role in large-scale carbon dioxide separations? ChemSusChem, 2010, 3 (8): 879–891.

    Article  Google Scholar 

  11. Phan A, Doonan C J, Uribe-Romo F J, et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Aocounts of Chemical Research, 2010, 43 (1): 58–67.

    Article  Google Scholar 

  12. Suh M P, Cheon Y E, Lee E Y. Syntheses and functions of porous metallosupramolecular networks. Coordination Chemistry Reviews, 2008, 252 (8-9): 1007–1026.

    Article  Google Scholar 

  13. Choi J, Jeong H K, Snyder M A, et al. Grain boundary defect elimination in a zeolite membrane by rapid thermal processing. Science, 2009, 325 (5940): 590–593.

    Article  Google Scholar 

  14. Guo H L, Zhu G S, Hewitt I J, et al. ‘Twin Copper Source’ growth of metal-organic framework membrane: Cu3(BTC)2 with high permeability and selectivity for recycling H2. Journal of the American Chemical Society, 2009, 131 (5): 1646–1647.

    Article  Google Scholar 

  15. Gascon J, Aguado S, Kapteijn F. Manufacture of dense coatings of Cu3(BTC)2 (HKUST-1) on alpha-alumina. Microporous and Mesoporoas Materials, 2008, 113 (1-3): 132–138.

    Article  Google Scholar 

  16. Perez E V, Balkus K J, Ferraris J P, et al. Mixed-matrix membranes containing MOF-5 for gas separations, Journal of Membrane Science, 2009, 328 (1-2): 165–173.

    Article  Google Scholar 

  17. Huang A S, Bux H, Steinbach F, et al. Molecular-sieve membrane with hydrogen permselectivity: ZIF-22 in LTA topology prepared with 3-Aminopropyltriethoxysilane as covalent linker, Angewandte Chemie-International Edition, 2010, 49 (29): 4958–4961.

    Article  Google Scholar 

  18. Liu Y Y, Hu E P, Khan E A, et al. Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353 (1-2): 36–40.

    Article  Google Scholar 

  19. Li Y S, Liang F Y, Bux H, et al. Molecular sieve membrane: Supported metal-organic framework with high hydrogen selectivity. Angewandte Chemie-International Edition, 2010, 49 (3): 548–551.

    Article  Google Scholar 

  20. Li Y S, Liang F Y, Bux H G, et al. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science, 2010, 354 (1-2): 48–54.

    Article  Google Scholar 

  21. Bux H, Liang F Y, Li Y S, et al. Zeolitic imidazolate framework membrane with molecular sieving poperties by mcrowave-asisted slvothermal snthesis. Journal of the American Chemical Society, 2009, 131 (44): 16000–16001.

    Article  Google Scholar 

  22. Venna S R, Carreon M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation. Journal of the American Chemical Society, 2010, 132 (1): 76–78.

    Article  Google Scholar 

  23. Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society, 2005, 127 (51): 17998–17999.

    Article  Google Scholar 

  24. Cavenati S, Grande C A, Rodrigues A E. Adsorption equilibrium of methane, carbon dioxide, and nitrogen on zeolite 13X at high pressures. Journal of Chemical and Engineering Data, 2004, 49 (4): 1095–1101.

    Article  Google Scholar 

  25. Hamon L, Jolimaitre E, Pirngruber G D. CO2 and CH4 Separation by adsorption using Cu-BTC metal-organic framework. Industrial and Engineering Chemistry Research, 2010, 49 (16): 7497–7503.

    Article  Google Scholar 

  26. Liang Z J, Marshall M, Chaffee A L. CO2 adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy Fuels, 2009, 23: 2785–2789.

    Article  Google Scholar 

  27. Aprea P, Caputo D, Gargiulo N, et al. Modeling carbon dioxide adsorption on microporous substrates: Comparison between Cu-BTC metal-organic framework and 13X zeolitic molecular sieve. J. Chem. Eng. Data, 2010, 55 (9): 3655–3661.

    Article  Google Scholar 

  28. Yazaydin A O, Benin A I, Faheem S A, et al. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chemistry of Materials, 2009, 21 (8): 1425–1430.

    Article  Google Scholar 

  29. Wu H, Simmons J M, Srinivas G, et al. Adsorption sites and binding nature of CO2 in prototypical metal-organic frameworks: A combined neutron diffraction and first-principles study. Journal of Physical Chemistry Letters, 2010, 1 (13): 1946–1951.

    Article  Google Scholar 

  30. Britt D, Furukawa H, Wang B, et al. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the National Academy of Sciences, 2009, 106 (49): 20637–20640.

    Article  Google Scholar 

  31. Botas J A, Calleja G, Sanchez-Sanchez M, et al. Cobalt Doping of the MOF-5 Framework and Its Effect on Gas-Adsorption Properties. Langmuir, 2010, 26 (8): 5300–5303.

    Article  Google Scholar 

  32. Xu Q, Liu D H, Yang Q Y, et al. Li-modified metal-organic frameworks for CO2/CH4 separation: A route to achieving high adsorption selectivity. Journal of Materials Chemistry, 2010, 20 (4): 706–714.

    Article  Google Scholar 

  33. Zhao Z X, Li Z, Lin Y S. Adsorption and diffusion of carbon dioxide on metal-organic framework (MOF-5). Industrial and Engineering Chemistry Research, 2009, 48 (22): 10015–10020.

    Article  Google Scholar 

  34. Saha D, Bao Z B, Jia F, et al. Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environmental Science and Technology, 2010, 44 (5): 1820–1826.

    Article  Google Scholar 

  35. Lu C M, Liu J, Xiao K F, et al. Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles. Journal of Chemical Engineering, 2010, 156 (2): 465–470.

    Article  MathSciNet  Google Scholar 

  36. Ferey G, Mellot-Draznieks C, Serre C, et al. A chromium terephthalatebased solid with unusually large pore volumes and surface area. Science, 2005, 309 (5743): 2040–2042.

    Article  Google Scholar 

  37. Chowdhury P, Bikkina C, Gumma S. Gas adsorption properties of the chromium-based metal organic framework MIL-101. Journal of Physical Chemistry C, 2009, 113 (16): 6616–6621.

    Article  Google Scholar 

  38. Llewellyn P L, Bourrelly S, Serre C, et al. High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. Langmuir, 2008, 24 (14): 7245–7250.

    Article  Google Scholar 

  39. Mu B, Schoenecker P M, Walton K S. Gas adsorption study on mesoporous metal-organic framework UMCM-1. Journal of Physical Chemistry C, 2010, 114 (14): 6464–6471.

    Article  Google Scholar 

  40. Mueller U, Schubert M, Teich F, et al. Metal-organic frameworks-prospective industrial applications. Journal of Materials Chemistry, 2006, 16 (7): 626–636.

    Article  Google Scholar 

  41. Walton K S, Millward A R, Dubbeldam D, et al. Understanding inflections and steps in carbon dioxide adsorption isotherms in metal-organic frameworks. Journal of the American Chemical Society, 2008, 130 (2): 406–407.

    Article  Google Scholar 

  42. Mofarahi M, Khojasteh Y, Khaledi H, et al. Design of CO2 absorption plant for recovery of CO2 from flue gases of gas turbine. Energy, 2008, 33 (8): 1311–1319.

    Article  Google Scholar 

  43. Liu J A, Wang Y, Benin A I, et al. CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC. Langmuir, 2010, 26 (17): 14301–14307.

    Article  Google Scholar 

  44. Liang Z J, Marshall M, Chaffee A L. CO2 adsorption, selectivity and water tolerance of pillared-layer metal organic frameworks. Microporous and Mesoporoas Materials, 2010, 132 (3): 305–310.

    Article  Google Scholar 

  45. Chen Y F, Lee J Y, Babarao R, et al. A highly hydrophobic metal organic framework Zn(BDC)(TED)0.5 for adsorption and separation of CH3OH/H2O and CO2/CH4: An integrated experimental and simulation study. Journal of Physical Chemistry C, 2010, 114 (14): 6602–6609.

    Article  Google Scholar 

  46. Park H J, Suh M P. Mixed-ligand metal-organic frameworks with large pores: Gas sorption properties and single-crystal-to-single-crystal transformation on guest exchange. Chemistry-A European Journal, 2008, 14 (29): 8812–8821.

    Article  Google Scholar 

  47. Ma S Q, Wang X S, Yuan D Q, et al. A coordinatively linked Yb metalorganic framework demonstrates high thermal stability and uncommon gas-adsorption selectivity. Angewandte Chemie-International Edition, 2008, 47 (22): 4130–4133.

    Article  Google Scholar 

  48. Llewellyn P L, Bourrelly S, Serre C, et al. How hydration drastically improves adsorption selectivity for CO2 over CH4 in the flexible chromium terephthalate MIL-53. Angewandte Chemie-International Edition, 2006, 45 (46): 7751–7754.

    Article  Google Scholar 

  49. Dreisbach F, Staudt R, Keller J U. High pressure adsorption data of methane, nitrogen, carbon dioxide and their binary and ternary mixtures on activated carbon. Adsorpt, 1999, 5 (3): 215–227.

    Article  Google Scholar 

  50. Yazaydin A O, Snurr R Q, Park T H, et al. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. Journal of the American Chemical Society, 2009, 131 (51): 18198–18199.

    Article  Google Scholar 

  51. Sumida K, Horike S, Kaye S S, et al. Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal-organic framework (Fe-BTT) discovered via high-throughput methods. Journal of Chemical Sciences, 2010, 1 (2): 184–191.

    Google Scholar 

  52. Demessence A, D’Alessandro D M, Foo M L, et al. Strong CO2 binding in a water-stable, triazolate-bridged metal-oganic famework fnctionalized with ehylenediamine. Journal of the American Chemical Society, 2009, 131 (25): 8784–8786.

    Article  Google Scholar 

  53. Park H J, Suh M P. Stepwise and hysteretic sorption of N2, O2, CO2, and H2 gases in a porous metal-organic framework [Zn-2(BPnDC)2(bpy)]. Chemical Communications, 2010, 46 (4): 610–612.

    Article  Google Scholar 

  54. Lee Y G, Moon H R, Cheon Y E, et al. A comparison of the H-2 sorption capacities of isostructural metal-organic frameworks with and without accessible metal sites: {Zn-2(abtc)(dMf)2}3 and {Cu-2(abtc)(dMf)2}3 versus {Cu-2(abtc)}3. Angewandte Chemie-International Edition, 2008, 47 (40): 7741–7745.

    Article  Google Scholar 

  55. Cheon Y E, Suh M P. Selective gas adsorption in a microporous metalorganic framework constructed of CoII4 clusters. Chemical Communications, 2009 (17): 2296–2298.

    Article  Google Scholar 

  56. Cheon Y E, Park J, Suh M P. Selective gas adsorption in a magnesiumbased metal-organic framework. Chemical Communications, 2009 (36): 5436–5438.

    Article  Google Scholar 

  57. Li J R, Tao Y, Yu Q, et al. Selective gas adsorption and unique structural topology of a highly stable guest-free zeolite-type MOF material with N-rich chiral open channels. Chemistry-A European Journal, 2008, 14 (9): 2771–2776.

    Article  Google Scholar 

  58. Dietzel P D C, Besikiotis V, Blom R. Application of metal-organic frameworks with coordinatively unsaturated metal sites in storage and separation of methane and carbon dioxide. Journal of Materials Chemistry, 2009, 19 (39): 7362–7370.

    Article  Google Scholar 

  59. Dietzel P D C, Johnsen R E, Fjellvag H, et al. Adsorption properties and structure of CO2 adsorbed on open coordination sites of metal-organic framework Ni2(dhtp) from gas adsorption, IR spectroscopy and X-ray diffraction. Chemical Communications, 2008 (41): 5125–5127.

    Article  Google Scholar 

  60. Pachfule P, Das R, Poddar P, et al. Structural, magnetic, and gas adsorption study of a two-dimensional tetrazole-pyrimidine based metal-organic framework. Crystal Growth and Design, 2010, 10 (6): 2475–2478.

    Article  Google Scholar 

  61. An J, Geib S J, Rosi N L. High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine-and aminodecorated pores. Journal of the Amevican Chemical Society, 2010, 132 (1): 38–39.

    Article  Google Scholar 

  62. Bae Y S, Spokoyny A M, Farha O K, et al. Separation of gas mixtures using Co(II) carborane-based porous coordination polymers. Chemical Communications, 2010, 46 (20): 3478–3480.

    Article  Google Scholar 

  63. Willans C E, French S, Barbour L J, et al. A catenated imidazole-based coordination polymer exhibiting significant CO2 sorption at low pressure. Dalton Transactions, 2009(33): 6480–6482.

    Article  Google Scholar 

  64. Bae Y S, Farha O K, Hupp J T, et al. Enhancement of CO2/N2 selectivity in a metal-organic framework by cavity modification. Journal of Materials Chemistry, 2009, 19 (15): 2131–2134.

    Article  Google Scholar 

  65. Chatti R, Bansiwal A K, Thote J A, et al. Amine loaded zeolites for carbon dioxide capture: Amine loading and adsorption studies. Microporous and Mesoporoas Materials, 2009, 121 (1-3): 84–89.

    Article  Google Scholar 

  66. Hiyoshi N, Yogo K, Yashima T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporoas Materials, 2005, 84 (1-3): 357–365.

    Article  Google Scholar 

  67. Arstad B, Fjellvag H, Kongshaug K O, et al. Amine functionalised metal organic frameworks (MOFs) as adsorbents for carbon dioxide. Adsorpt, 2008, 14 (6): 755–762.

    Article  Google Scholar 

  68. An J, Rosi N L. Tuning MOF CO2 adsorption properties via cation exchange. Journal of The American Chemical Society, 2010, 132 (16): 5578–5579.

    Article  Google Scholar 

  69. Noro S, Tanaka D, Sakamoto H, et al. Selective gas adsorption in one-dimensional, flexible Cu-II coordination polymers with polar units. Chemistry of Materials, 2009, 21 (14): 3346–3355.

    Article  Google Scholar 

  70. Vaidhyanathan R, Iremonger S S, Dawson K W, et al. An aminefunctionalized metal organic framework for preferential CO2 adsorption at low pressures. Chemical Communications, 2009. (35): 5230–5232.

    Article  Google Scholar 

  71. Barea E, Tagliabue G, Wang W G, et al. A flexible pro-porous coordination polymer:Non-conventional synthesis and separation properties towards CO2/CH4 Mixtures. Chemistry-A European Journal, 2010, 16 (3): 931–937.

    Article  Google Scholar 

  72. Bae Y S, Farha O K, Spokoyny A M, et al. Carborane-based metal-organic frameworks as highly selective sorbents for CO2 over methane. Chemical Communications, 2008. (35): 4135–4137.

    Article  Google Scholar 

  73. Bae Y S, Mulfort K L, Frost H, et al. Separation of CO2 from CH4 using mixed-ligand metal-organic frameworks. Langmuir, 2008, 24 (16): 8592–8598.

    Article  Google Scholar 

  74. Mu B, Li F, Walton K S. A novel metal-organic coordination polymer for selective adsorption of CO2 over CH4. Chemical Communications, 2009, (18): 2493–2495.

    Article  Google Scholar 

  75. Bastin L, Barcia P S, Hurtado E J, et al. A microporous metal-organic framework for separation of CO2/N2 and CO2/CH4 by fixed-bed adsorption. Journal of Physical Chemistry C, 2008, 112 (5): 1575–1581.

    Article  Google Scholar 

  76. Hayashi H, Cote A P, Furukawa H, et al. Zeolite a imidazolate frameworks. Nature Materials, 2007, 6 (7): 501–506.

    Article  Google Scholar 

  77. Huang X C, Lin Y Y, Zhang J P, et al. Ligand-directed strategy for zeolitetype metal-organic frameworks: Zinc(II) imidazolates with unusual zeolitic topologies. Angewandte Chemie-International Edition, 2006, 45 (10): 1557–1559.

    Article  Google Scholar 

  78. Park K S, Ni Z, Cote A P, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 2006, 103 (27): 10186–10191.

    Article  Google Scholar 

  79. Banerjee R, Furukawa H, Britt D, et al. Control of pore size and functionality in isoreticular zeolitic imidazolate frameworks and their carbon dioxide selective capture properties. Journal of the American Chemical Society, 2009, 131 (11): 3875–3877.

    Article  Google Scholar 

  80. Morris W, Leung B, Furukawa H, et al. A combined experimentalcomputational investigation of carbon dioxide capture in a series of isoreticular zeolitic imidazolate frameworks. Journal of the American Chemical Society, 2010, 132 (32): 11006–11008.

    Article  Google Scholar 

  81. Banerjee R, Phan A, Wang B, et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science, 2008, 319 (5865): 939–943.

    Article  Google Scholar 

  82. Wang B, Cote A P, Furukawa H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature, 2008, 453 (7192): 207–206.

    Article  Google Scholar 

  83. Debatin F, Thomas A, Kelling A, et al. In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2-and CO2-storage ability. Angewandte Chemie-International Edition, 2010, 49 (7): 1258–1262.

    Article  Google Scholar 

  84. Horike S, Shimomura S, Kitagawa S. Soft porous crystals. Nature Materials, 2009, 1 (9): 695–704.

    Google Scholar 

  85. Serre C, Millange F, Thouvenot C, et al. Very large breathing effect in the first nanoporous chromium(III)-based solids: MIL-53 or CrIII(OH)center dot{O2C-C6H4-CO2}center dot{HO2C-C6H4-CO2H}x. H2Oy. Journal of the American Chemical Society, 2002, 124 (45): 13519–13526

    Article  Google Scholar 

  86. Torrisi A, Bell R G, Mellot-Draznieks C. Functionalized MOFs for enhanced CO2 capture. Crystal Growth and Design., 2010, 10 (7): 2839–2841.

    Article  Google Scholar 

  87. Hamon L, Llewellyn P L, Devic T, et al. Co-adsorption and separation of CO2-CH4 mixtures in the highly flexible MIL-53(Cr) MOF. Journal of the American Chemical Society, 2009, 131 (47): 17490–17499.

    Article  Google Scholar 

  88. Couck S, Denayer J F M, Baron G V, et al. An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. Journal of the American Chemical Society, 2009, 131 (18): 6326–6327.

    Article  Google Scholar 

  89. Ramsahye N A, Maurin G, Bourrelly S, et al. Probing the adsorption sites for CO2 in metal organic frameworks materials MIL-53 (Al, Cr) and MIL-47 (V) by density functional theory. Journal of Physical Chemistry C, 2008, 112 (2): 514–520.

    Article  Google Scholar 

  90. Ramsahye N A, Maurin G, Bourrelly S, et al. Charge distribution in metal organic framework materials: Transferability to a preliminary molecular simulation study of the CO2 adsorption in the MIL-53 (Al) system. Physical Chemistry Chemical Physics, 2007, 9 (9): 1059–1063.

    Article  Google Scholar 

  91. Ramsahye N A, Maurin G, Bourrelly S, et al. Adsorption of CO2 in metal organic frameworks of different metal centres: Grand Canonical Monte Carlo simulations compared to experiments. Adsorpt, 2007, 13 (5-6): 461–467.

    Article  Google Scholar 

  92. Ramsahye N A, Maurin G, Bourrelly S, et al. On the breathing effect of a metal-organic framework upon CO2 adsorption: Monte Carlo compared to microcalorimetry experiments. Chemical Communications, 2007(31): 3261–3263.

    Article  Google Scholar 

  93. Kishan M R, Tian J, Thallapally P K, et al. Flexible metal-organic supramolecular isomers for gas separation. Chemical Communications, 2010, 46 (4): 538–540.

    Article  Google Scholar 

  94. Thallapally P K, Tian J, Kishan M R, et al. Flexible (Breathing) interpenetrated metal-organic frameworks for CO2 separation applications. Journal of the American Chemical Society, 2008, 130 (50): 16842–16843.

    Article  Google Scholar 

  95. Fukushima T, Horike S, Inubushi Y, et al. Solid solutions of soft porous coordination polymers: Fine-tuning of gas adsorption properties. Angewandte Chemie-International Edition, 2010, 49 (28): 4820–4824.

    Article  Google Scholar 

  96. Maji T K, Mostafa G, Matsuda R, et al. Guest-induced asymmetry in a metal-organic porous solid with reversible single-crystal-to-single-crystal structural transformation. Journal of the American Chemical Society, 2005, 127 (49): 17152–17153.

    Article  Google Scholar 

  97. Kitaura R, Seki K, Akiyama G, et al. Porous coordination-polymer crystals with gated channels specific for supercritical gases. Angewandte Chemie-International Edition, 2003, 42 (4): 428–431.

    Article  Google Scholar 

  98. Choi H S, Suh M P. Highly selective CO2 capture in flexible 3D coordination polymer networks. Angewandte Chemie-International Edition, 2009, 48 (37): 6865–6869.

    Article  Google Scholar 

  99. An J Y, Fiorella R P, Geib S J, et al. Synthesis, structure, assembly, and modulation of the CO2 adsorption properties of a zinc-adeninate macrocycle. Journal of the American Chemical Society, 2009, 131 (24): 8401–8403.

    Article  Google Scholar 

  100. Kanoh H, Kondo A, Noguchi H, et al. Elastic layer-structured metal organic frameworks (ELMS). Journal of Colloid and Interface Science, 2009, 334 (1): 1–7.

    Article  Google Scholar 

  101. Kondo A, Chinen A, Kajiro H, et al. Metal-ion-dependent gas sorptivity of elastic layer-structured MOFs. Chemistry-A European Journal, 2009, 15 (31): 7549–7553.

    Article  Google Scholar 

  102. Ma S Q, Sun D F, Wang X S, et al. A mesh-adjustable molecular sieve for general use in gas separation. Angewandte Chemie-International Edition, 2007, 46 (14): 2458–2462.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yao, J., Li, D., Wang, H. (2013). The Application of Metal-Organic Frameworks to CO2 Capture. In: Zhou, Y. (eds) Eco- and Renewable Energy Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33497-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33497-9_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33496-2

  • Online ISBN: 978-3-642-33497-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics