Skip to main content

Nanostructured Electrode Materials for Lithium-ion Battery

  • Chapter
Book cover Eco- and Renewable Energy Materials
  • 905 Accesses

Abstract

Owing to the limited oil storage and the global warming threat, it has been a worldwide topic to build the low carbon society which is based on the sustainable energy, such as wind and solar energy. As an effective energy storage device for the sustainable energy, lithium-ion battery plays a more and more important role in human’s life. Future generations of lithium-ion batteries are required to store electricity from sustainable energy source and power not only the portable electronic devices (cellphones, laptop computer etc.) but also electric vehicles (EVs). In order to increase energy and power density to meet the future challenges of energy storage, many efforts have been made to develop nanosturctured electrode materials for lithium-ion battery. Herein, we review some new progress in using these nanostructured materials as cathodes and anodes to develop lithiumion batteries with high energy density, high rate capability, and excellent cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tarascon J M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature, 2001, 414(6861): 359–367.

    Google Scholar 

  2. Armand M, Tarascon J M. Building better batteries. Nature, 2008, 451(7179): 652–657.

    Google Scholar 

  3. Poizot P, Laruelle S, Grugeon S, et al. Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries. Nature, 2000, 407(6803): 496–499.

    Google Scholar 

  4. Ohzuku T, Ueda A, Yamamoto N. Zero-strain insertion material of Li[Li1/3Ti5/3]O-4 for rechargeable lithium cells. Journal of the Electrochemical Society, 1995, 142(5): 1431–1435.

    Google Scholar 

  5. Pereira N, Klein L C, Amatucci G G. The electrochemistry of Zn3N2 and LiZnN — A lithium reaction mechanism for metal nitride electrodes. Journal of the Electrochemical Society, 2002, 149(3): A262–A271.

    Google Scholar 

  6. Boukamp B A, Lesh G C, Huggins R A. All-solid lithium electrodes with mixed-conductor matrix. Journal of the Electrochemical Society, 1981, 128(4): 725–729.

    Google Scholar 

  7. Park M H, Kim M G, Joo J, et al. Silicon nanotube battery anodes. Nano Letters, 2009, 9(11): 3844–3847.

    Google Scholar 

  8. Arico A S, Bruce P, Scrosati B, et al. Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 2005, 4(5): 366–377.

    Google Scholar 

  9. Graetz J, Ahn C C, Yazami R, et al. Highly reversible lithium storage in nanostructured silicon. Electrochemical and Solid State Letters, 2003, 6(9): A194–A197.

    Google Scholar 

  10. Chan C K, Peng H L, Liu G, et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotechnology, 2008, 3(1): 31–35.

    Google Scholar 

  11. Ohara S, Suzuki J, Sekine K, et al. Li insertion/extraction reaction at a Si film evaporated on a Ni foil. Journal of Power Sources, 2003, 119: 591–596.

    Google Scholar 

  12. Li H, Huang X J, Chen L Q, et al. A high capacity nano-Si composite anode material for lithium rechargeable batteries. Electrochemical and Solid State Letters, 1999, 2(11): 547–549.

    Google Scholar 

  13. Lee J K, Kung M C, Trahey L, et al. Nanocomposites derived from phenolfunctionalized Si nanoparticles for high performance lithium ion battery anodes. Chemistry of Materials, 2009, 21(1): 6–8.

    Google Scholar 

  14. Kim H, Cho J. Superior lithium electroactive mesoporous Si@carbon coreshell nanowires for lithium battery anode material. Nano Letters, 2008, 8(11): 3688–3691.

    MathSciNet  Google Scholar 

  15. Dimov N, Kugino S, Yoshio M. Carbon-coated silicon as anode material for lithium ion batteries: Advantages and limitations. Electrochimica Acta, 2003, 48(11): 1579–1587.

    Google Scholar 

  16. Magasinski A, Dixon P, Hertzberg B, et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nature Materials, 2010, 9(4): 353–358.

    Google Scholar 

  17. Wang W, Kumta P N. Nanostructured hybrid Silicon/Carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. Acs Nano, 2010, 4(4): 2233–2241.

    Google Scholar 

  18. Cui L F, Yang Y, Hsu C M, et al. Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. Nano Letters, 2009, 9(9): 3370–3374.

    Google Scholar 

  19. Zhou S, Liu X H, Wang D W. Si/TiSi2 heteronanostructures as high-capacity anode material for Li ion batteries. Nano Letters, 2010, 10(3): 860–863.

    MathSciNet  Google Scholar 

  20. Gomez-Camer J L, Martin F, Morales J, et al. Precipitation of CoS vs ceramic synthesis for improved performance in lithium cells. Journal of the Electrochemical Society, 2008, 155(3): A189–A195.

    Google Scholar 

  21. Morales J, Sanchez L, Martin F, et al. Synthesis and characterization of nanometric iron and iron-titanium oxides by mechanical milling: Electrochemical properties as anodic materials in lithium cells. Journal of the Electrochemical Society, 2005, 152(9): A1748–A1754.

    Google Scholar 

  22. Morales J, Sanchez L, Martin F, et al. Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells. Electrochimica Acta, 2004, 49(26): 4589–4597.

    Google Scholar 

  23. Liu Y, Mi C H, Su L H, et al. Hydrothermal synthesis of CO3O4 microspheres as anode material for lithium-ion batteries. Electrochimica Acta, 2008, 53(5): 2507–2513.

    Google Scholar 

  24. Lou X W, Deng D, Lee J Y, et al. Thermal formation of mesoporous singlecrystal CO3O4 nano-needles and their lithium storage properties. Journal of Materials Chemistry, 2008, 18(37): 4397–4401.

    Google Scholar 

  25. Lou X W, Deng D, Lee J Y, et al. Self-supported formatnion of needlelike CO3O4 nanotubes and their application as lithium-ion battery electrodes. Advanced Materials, 2008, 20(2): 258–262.

    Google Scholar 

  26. Li Y G, Tan B, Wu Y Y. Mesoporous CO3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Letters, 2008, 8(1): 265–270.

    Google Scholar 

  27. Chou S L, Wang J Z, Liu H K, et al. Electrochemical deposition of porous CO3O4 nanostructured thin film for lithium-ion battery. Journal of Power Sources, 2008, 182(1): 359–364.

    Google Scholar 

  28. Zhan F M, Geng B Y, Guo Y J. Porous CO3O4 nanosheets with extraordinarily high discharge capacity for lithium batteries. Chemistry-a European Journal, 2009, 15(25): 6169–6174.

    Google Scholar 

  29. Wang Y, Fu Z W, Qin Q Z. A nanocrystalline CO3O4 thin film electrode for Li-ion batteries. Thin Solid Films, 2003, 441(1-2): 19–24.

    Google Scholar 

  30. Li W Y, Xu L N, Chen J. CO3O4 nanomaterials in lithium-ion batteries and gas sensors. Advanced Functional Materials, 2005, 15(5): 851–857.

    MathSciNet  MATH  Google Scholar 

  31. Chen J, Xu L N, Li W Y, et al. Alpha-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Advanced Materials, 2005, 17(5): 582–586.

    Google Scholar 

  32. Liu H J, Bo S H, Cui W J, et al. Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteries. Electrochimica Acta, 2008, 53(22): 6497–6503.

    Google Scholar 

  33. Yu Y, Chen C H, Shui J L, et al. Nickel-foam-supported reticular CoO-Li2O composite anode materials for lithium ion batteries. Angewandte Chemie-International Edition, 2005, 44(43): 7085–7089.

    Google Scholar 

  34. Reddy M V, Yu T, Sow C H, et al. Alpha-Fe2O3 nanoflakes as an anode material for Li-ion batteries. Advanced Functional Materials, 2007, 17(15): 2792–2799.

    Google Scholar 

  35. Komaba S, Mikumo T, Yabuuchi N, et al. Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and alpha-Fe2O3 for rechargeable batteries. Journal of the Electrochemical Society, 2010, 157(1): A60–A65.

    Google Scholar 

  36. Ortiz G F, Hanzu I, Lavela P, et al. A novel architectured negative electrode based on titania nanotube and iron oxide nanowire composites for Li-ion microbatteries. Journal of Materials Chemistry, 2010, 20(20): 4041–4046.

    Google Scholar 

  37. Chou S L, Wang J Z, Wexler D, et al. High-surface-area alpha-Fe2O3/carbon nanocomposite: One-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. Journal of Materials Chemistry, 2010, 20(11): 2092–2098.

    Google Scholar 

  38. Hassan M F, Rahman M M, Guo Z P, et al. Solvent-assisted molten salt process: A new route to synthesise alpha-Fe2O3/C nanocomposite and its electrochemical performance in lithium-ion batteries. Electrochimica Acta, 2010, 55(17): 5006–5013.

    Google Scholar 

  39. Morales J, Sanchez L, Martin F, et al. Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells. Thin Solid Films, 2005, 474(1-2): 133–140.

    Google Scholar 

  40. Wang S Q, Zhang J Y, Chen C H. Dandelion-like hollow microspheres of CuO as anode material for lithium-ion batteries. Scripta Materialia, 2007, 57(4): 337–340.

    MathSciNet  Google Scholar 

  41. Xiang J Y, Tu J P, Zhang L, et al. Simple synthesis of surface-modified hierarchical copper oxide spheres with needle-like morphology as anode for lithium ion batteries. Electrochimica Acta, 2010, 55(5): 1820–1824.

    Google Scholar 

  42. Zheng S F, Hu J S, Zhong L S, et al. Introducing dual functional CNT networks into CuO nanomicrospheres toward superior electrode materials for lithium-ion batteries. Chemistry of Materials, 2008, 20(11): 3617–3622.

    Google Scholar 

  43. Venkatachalam S, Zhu H W, Masarapu C, et al. In-Situ formation of sandwiched structures of nanotube/CuxOy/Cu composites for lithium battery applications. Acs Nano, 2009, 3(8): 2177–2184.

    Google Scholar 

  44. Li C, Wei W, Fang S M, et al. A novel CuO-nanotube/SnO2 composite as the anode material for lithium ion batteries. Journal of Power Sources, 2010, 195(9): 2939–2944.

    Google Scholar 

  45. Ke F S, Huang L, Wei G Z, et al. One-step fabrication of CuO nanoribbons array electrode and its excellent lithium storage performance. Electrochimica Acta, 2009, 54(24): 5825–5829.

    Google Scholar 

  46. Chen L B, Lu N, Xu C M, et al. Electrochemical performance of polycrystalline CuO nanowires as anode material for Li ion batteries. Electrochimica Acta, 2009, 54(17): 4198–4201.

    Google Scholar 

  47. Kim I S, Blomgren G E, Kumta P N. Sn/C composite anodes for Li-ion batteries. Electrochemical and Solid State Letters, 2004, 7(3): A44–A48.

    Google Scholar 

  48. Derrien G, Hassoun J, Panero S, et al. Nanostructured Sn-C composite as an advanced anode material in high-performance lithium-ion batteries. Advanced Materials, 2007, 19(17): 2336–2340.

    Google Scholar 

  49. Kepler K D, Vaughey J T, Thackeray M M. LixCu6Sn5 (0 < x < 13): An intermetallic insertion electrode for rechargeable lithium batteries. Electrochemical and Solid State Letters, 1999, 2(7): 307–309.

    Google Scholar 

  50. Shi L H, Li H, Wang Z X, et al. Nano-SnSb alloy deposited on MCMB as an anode material for lithium ion batteries. Journal of Materials Chemistry, 2001, 11(5): 1502–1505.

    MathSciNet  Google Scholar 

  51. Zhang J J, Xia Y Y. Co-Sn alloys as negative electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 2006, 153(8): A1466–A1471.

    Google Scholar 

  52. Lee C P, Lin C Y, Yen Y W. The 260 degrees C phase equilibria of the Sn-Sb-Cu ternary system and interfacial reactions at the Sn-Sb/Cu joints. Intermetallics, 2007, 15(8): 1027–1037.

    Google Scholar 

  53. Dahn J R, Courtney I A, Mao O. Short-range Sn ordering and crystal structure of Li4.4Sn prepared by ambient temperature electrochemical methods. Solid State Ionics, 1998, 111(3-4): 289–294.

    Google Scholar 

  54. Ehrlich G M, Durand C, Chen X, et al. Metallic negative electrode materials for rechargeable nonaqueous batteries. Journal of the Electrochemical Society, 2000, 147(3): 886–891.

    Google Scholar 

  55. Hassoun J, Panero S, Simon P, et al. High-rate, long-life Ni-Sn nanostructured electrodes for lithium-ion batteries. Advanced Materials, 2007, 19(12): 1632–1635.

    Google Scholar 

  56. Cui W J, Li F, Liu H J, et al. Core-shell carbon-coated Cu6Sn5 prepared by in situ polymerization as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry, 2009, 19(39): 7202–7207.

    Google Scholar 

  57. Kwon Y, Kim H, Doo S G, et al. Sn0.9Si0.1/carbon core-shell nanoparticles for high-density lithium storage materials. Chemistry of Materials, 2007, 19(5): 982–986.

    Google Scholar 

  58. Zhu J J, Lu Z H, Aruna S T, et al. Sonochemical synthesis of SnO2 nanoparticles and their preliminary study as Li insertion electrodes. Chemistry of Materials, 2000, 12(9): 2557–2566.

    Google Scholar 

  59. Park M S, Wang G X, Kang Y M, et al. Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries. Angewandte Chemie-International Edition, 2007, 46(5): 750–753.

    Google Scholar 

  60. Yuan L, Guo Z P, Konstantinov K, et al. Nano-structured spherical porous SnO2 anodes for lithium-ion batteries. Journal of Power Sources, 2006, 159(1): 345–348.

    Google Scholar 

  61. Lou X W, Wang Y, Yuan C L, et al. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Advanced Materials, 2006, 18(17): 2325–2329.

    Google Scholar 

  62. Yin X M, Li C C, Zhang M, et al. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. Journal of Physical Chemistry C, 2010, 114(17): 8084–8088.

    Google Scholar 

  63. Noh M, Kwon Y, Lee H, et al. Amorphous carbon-coated tin anode material for lithium secondary battery. Chemistry of Materials, 2005, 17(8): 1926–1929.

    Google Scholar 

  64. Wang Y, Zeng H C, Lee J Y. Highly reversible lithium storage in porous SnO2 nanotubes with coaxially grown carbon nanotube overlayers. Advanced Materials, 2006, 18(5): 645–649.

    Google Scholar 

  65. Hu Y S, Demir-Cakan R, Titirici M M, et al. Superior storage performance of a Si@SiOx/C nanocomposite as anode material for lithium-ion batteries. Angewandte Chemie-International Edition, 2008, 47(9): 1645–1649.

    Google Scholar 

  66. Lou X W, Chen J S, Chen P, et al. One-pot synthesis of carbon-coated SnO2 nanocolloids with improved reversible lithium storage properties. Chemistry of Materials, 2009, 21(13): 2868–2874.

    Google Scholar 

  67. Takami N, Inagaki H, Kishi T, et al. Electrochemical kinetics and safety of 2-Volt class Li-Ion battery system using lithium titanium oxide anode. Journal of the Electrochemical Society, 2009, 156(2): A128–A132.

    Google Scholar 

  68. Wu H M, Belharouak I, Deng H, et al. Development of LiNi0.5Mn1.5O4/ Li4Ti5O12 System with long cycle life. Journal of the Electrochemical Society, 2009, 156(12): A1047–A1050.

    Google Scholar 

  69. Belharouak I, Sun Y K, Lu W, et al. On the safety of the Li4Ti5O12/LiMn2O4 lithium-ion battery system. Journal of the Electrochemical Society, 2007, 154(12): A1083–A1087.

    Google Scholar 

  70. Prakash A S, Manikandan P, Ramesha K, et al. Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-Ion battery anode. Chemistry of Materials, 2010, 22(9): 2857–2863.

    Google Scholar 

  71. Li J R, Tang Z L, Zhang Z T. Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12. Electrochemistry Communications, 2005, 7(9): 894–899.

    Google Scholar 

  72. Tang Y F, Yang L, Qiu Z, et al. Preparation and electrochemical lithium storage of flower-like spinel Li4Ti5O12 consisting of nanosheets. Electrochemistry Communications, 2008, 10(10): 1513–1516.

    Google Scholar 

  73. Sorensen E M, Barry S J, Jung H K, et al. Three-dimensionally ordered macroporous Li4Ti5O12: Effect of wall structure on electrochemical 138 Eco-and Renewable Energy Materials properties. Chemistry of Materials, 2006, 18(2): 482–489.

    Google Scholar 

  74. Jiang C H, Zhou Y, Honma I, et al. Preparation and rate capability of Li4Ti5O12 hollow-sphere anode material. Journal of Power Sources, 2007, 166(2): 514–518.

    Google Scholar 

  75. Wang Y G, Liu H M, Wang K X, et al. Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. Journal of Materials Chemistry, 2009, 19(37): 6789–6795.

    Google Scholar 

  76. Cheng L, Li X L, Liu H J, et al. Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. Journal of the Electrochemical Society, 2007, 154(7): A692–A697.

    Google Scholar 

  77. Cheng L, Yan J, Zhu G N, et al. General synthesis of carbon-coated nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. Journal of Materials Chemistry, 2010, 20(3): 595–602.

    Google Scholar 

  78. Park K S, Benayad A, Kang D J, et al. Nitridation-driven conductive Li4Ti5O12 for lithium Ion Batteries. Journal of the American Chemical Society, 2008, 130(45): 14930–14931.

    Google Scholar 

  79. Koudriachova M V, Harrison N M, de Leeuw S W. Effect of diffusion on lithium intercalation in titanium dioxide. Physical Review Letters, 2001, 86(7): 1275–1278.

    Google Scholar 

  80. Hu Y S, Kienle L, Guo Y G, et al. High lithium electroactivity of nanometersized rutile TiO2. Advanced Materials, 2006, 18(11): 1421–1426.

    Google Scholar 

  81. Armstrong A R, Armstrong G, Canales J, et al. Lithium-ion intercalation into TiO2-b nanowires. Advanced Materials, 2005, 17(7): 862–865.

    Google Scholar 

  82. Armstrong G, Armstrong A R, Bruce P G, et al. TiO2(B) nanowires as an improved anode material for lithium-ion batteries containing LiFePO4 or LiNi0.5Mn1.5O4 cathodes and a polymer electrolyte. Advanced Materials, 2006, 18(19): 2597–2600.

    Google Scholar 

  83. Wilkening M, Lyness C, Armstrong A R, et al. Diffusion in confined dimensions: Li+ transport in mixed conducting TiO2-B nanowires. Journal of Physical Chemistry C, 2009, 113(12): 4741–4744.

    Google Scholar 

  84. Yue W B, Xu X X, Irvine J T S, et al. Mesoporous monocrystalline TiO2 and its solid-state electrochemical properties. Chemistry of Materials, 2009, 21(12): 2540–2546.

    Google Scholar 

  85. Ren Y, Hardwick L J, Bruce P G. Lithium intercalation into mesoporous anatase with an ordered 3D pore structure. Angewandte Chemie-International Edition, 2010, 49(14): 2570–2574.

    Google Scholar 

  86. Armstrong G, Armstrong A R, Canales J, et al. TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries. Electrochemical and Solid State Letters, 2006, 9(3): A139–A143.

    Google Scholar 

  87. Brezesinski T, Wang J, Polleux J, et al. Templated nanocrystal-based porous TiO2 films for next-generation electrochemical capacitors. Journal of the American Chemical Society, 2009, 131(5): 1802–1809.

    Google Scholar 

  88. Kim S W, Han T H, Kim J, et al. Fabrication and electrochemical characterization of TiO2 three-dimensional nanonetwork based on peptide assembly. Acs Nano, 2009, 3(5): 1085–1090.

    Google Scholar 

  89. Amine K, Belharouak L, Chen Z H, et al. Nanostructured anode material for high-power battery system in electric vehicles. Advanced Materials, 2010

    Google Scholar 

  90. Dambournet D, Belharouak I, Amine K. Tailored preparation methods of TiO2 anatase, rutile, brookite: Mechanism of formation and electrochemical properties. Chemistry of Materials, 2010, 22(3): 1173–1179.

    Google Scholar 

  91. Pol V G, Kang S H, Calderon-Moreno J M, et al. Autogenic reactions for preparing carbon-encapsulated, nanoparticulate TiO2 electrodes for lithiumion batteries. Journal of Power Sources, 2010, 195(15): 5039–5043.

    Google Scholar 

  92. Wang Y, Cao G Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Advanced Materials, 2008, 20(12): 2251–2269.

    Google Scholar 

  93. Ellis B L, Lee K T, Nazar L F. Positive electrode materials for Li-Ion and Libatteries. Chemistry of Materials, 2010, 22(3): 691–714.

    Google Scholar 

  94. Whittingham M S. Lithium batteries and cathode materials. Chemical Reviews, 2004, 104(10): 4271–4301.

    Google Scholar 

  95. Mizushima K, Jones P C, Wiseman P J, et al. Lixcoo2 „(Oless-Thanxless-Than-or-Equal-to1)-a New Cathode Material for Batteries of High-Energy Density. Materials Research Bulletin, 1980, 15(6): 783–789.

    Google Scholar 

  96. Thackeray M M, David W I F, Bruce P G, et al. Lithium insertion into manganese spinels. Materials Research Bulletin, 1983, 18(4): 461–472.

    Google Scholar 

  97. Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Journal of the Electrochemical Society, 1997, 144(4): 1188–1194.

    Google Scholar 

  98. Whittingham M S. Journal of the Electrochemical Society, 1976, (123): 315.

    Google Scholar 

  99. Sudant G, Baudrin E, Dunn B, et al. Synthesis and electrochemical properties of vanadium oxide aerogels prepared by a freeze-drying process. Journal of the Electrochemical Society, 2004, 151(5): A666–A671.

    Google Scholar 

  100. Baudrin E, Sudant G, Larcher D, et al. Preparation of nanotextured VO2[B] from vanadium oxide aerogels. Chemistry of Materials, 2006, 18(18): 4369–4374.

    Google Scholar 

  101. Wei M D, Sugihara H, Honma I, et al. A new metastable phase of crystallized V2O4 center dot 0.25H(2)O nanowires: Synthesis and electrochemical measurements. Advanced Materials, 2005, 17(24): 2964–2969.

    Google Scholar 

  102. Gao S K, Chen Z J, Wei M D, et al. Single crystal nanobelts of V3O7 center dot H2O: A lithium intercalation host with a large capacity. Electrochimica Acta, 2009, 54(3): 1115–1118.

    Google Scholar 

  103. Liu H M, Wang Y G, Wang K X, et al. Synthesis and electrochemical properties of single-crystalline LiV3O8 nanorods as cathode materials for rechargeable lithium batteries. Journal of Power Sources, 2009, 192(2): 668–673.

    Google Scholar 

  104. Liu H M, Wang Y G, Li L, et al. Facile synthesis of NaV6O15 nanorods and its electrochemical behavior as cathode material in rechargeable lithium batteries. Journal of Materials Chemistry, 2009, 19(42): 7885–7891.

    Google Scholar 

  105. Shi S F, Cao M H, Fle X Y, et al. Surfactant-assisted hydrothermal growth of single-crystalline ultrahigh-aspect-ratio vanadium oxide nanobelts. Crystal Growth and Design, 2007, 7(9): 1893–1897.

    Google Scholar 

  106. Lee K, Wang Y, Cao G H. Dependence of electrochemical properties of vanadium oxide films on their nano-and microstructures. Journal of Physical Chemistry B, 2005, 109(35): 16700–16704.

    Google Scholar 

  107. Liu H M, Wang Y G, Wang K X, et al. Design and synthesis of a novel nanothorn VO2(B) hollow microsphere and their application in lithium-ion batteries. Journal of Materials Chemistry, 2009, 19(18): 2835–2840.

    Google Scholar 

  108. Cao A M, Hu J S, Liang H P, et al. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithiumion batteries. Angewandte Chemie-International Edition, 2005, 44(28): 4391–4395.

    Google Scholar 

  109. Chabre Y, Pannetier J. Structural and electrochemical properties of the proton gamma-MnO2 System. Progress in Solid State Chemistry, 1995, 23(1): 1–130.

    Google Scholar 

  110. Machefaux E, Verbaere A, Guyomard D. Electrochemical synthesis of new substituted manganese oxides for lithium battery applications. Journal of Power Sources, 2006, 157(1): 443–447.

    Google Scholar 

  111. Chen J, Cheng F Y. Combination of lightweight elements and nanostructured materials for Batteries. Accounts of Chemical Research, 2009, 42(6): 713–723.

    Google Scholar 

  112. Thackeray M M. Manganese oxides for lithium batteries. Progress in Solid State Chemistry, 1997, 25(1-2): 1–71.

    Google Scholar 

  113. Chou S L, Cheng F Y, Chen J. Electrodeposition synthesis and electrochemical properties of nanostructured gamma-MnO2 films. Journal of Power Sources, 2006, 162(1): 727–734.

    Google Scholar 

  114. Cheng F Y, Zhao J Z, Song W, et al. Facile controlled synthesis of MnO2 nanostructures of novel shapes and their application in batteries. Inorganic Chemistry, 2006, 45(5): 2038–2044.

    Google Scholar 

  115. West W C, Myung N V, Whitacre J F, et al. Electrodeposited amorphous manganese oxide nanowire arrays for high energy and power density electrodes. Journal of Power Sources, 2004, 126(1-2): 203–206.

    Google Scholar 

  116. Wu M S, Chiang P C J, Lee J T, et al. Synthesis of manganese oxide electrodes with interconnected nanowire structure as an anode material for rechargeable lithium ion batteries. Journal of Physical Chemistry B, 2005, 109(49): 23279–23284.

    Google Scholar 

  117. Luo J Y, Zhang J J, Xia Y Y. Highly electrochemical reaction of lithium in the ordered mesoporosus beta-MnO2. Chemistry of Materials, 2006, 18(23): 5618–5623.

    Google Scholar 

  118. Jiao F, Bruce P G. Mesoporous crystalline beta-MnO2-a reversible positive electrode for rechargeable lithium batteries. Advanced Materials, 2007, 19(5): 657–660.

    Google Scholar 

  119. Wang Y G, Wu W, Cheng L, et al. A polyaniline-intercalated layered manganese oxide nanocomposite prepared by an inorganic/organic interface reaction and its high electrochemical performance for Li storage. Advanced Materials, 2008, 20(11): 2166–2170.

    Google Scholar 

  120. Larcher D, Reddy T B. Handbook of Batteries. New York: McGraw-Hill, 2002.

    Google Scholar 

  121. Ronci F, Scrosati B, Albertini V R, et al. In situ energy dispersive X-ray diffraction study of LiNi0.8Co0.2O2 cathode material for lithium batteries. Journal of Physical Chemistry B, 2001, 105(4): 754–759.

    Google Scholar 

  122. Li X X, Cheng F Y, Guo B, et al. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 nanotubes as the cathode materials of lithium ion batteries. Journal of Physical Chemistry B, 2005, 109(29): 14017–14024.

    Google Scholar 

  123. Jiao F, Shaju K M, Bruce P G. Synthesis of nanowire and mesoporous lowtemperature LiCoO2 by a post-templating reaction. Angewandte Chemie-International Edition, 2005, 44(40): 6550–6553.

    Google Scholar 

  124. Luo J Y, Cheng L, Xia Y Y. LiMn2O4 hollow nanosphere electrode material with excellent cycling reversibility and rate capability. Electrochemistry Communications, 2007, 9(6): 1404–1409.

    Google Scholar 

  125. Luo J Y, Wang Y G, Xiong H M, et al. Ordered mesoporous spinel LiMn(2) O(4)by a soft-chemical process as a cathode material for lithium-ion batteries. Chemistry of Materials, 2007, 19(19): 4791–4795.

    Google Scholar 

  126. Luo J Y, Xiong H M, Xia Y Y. LiMn2O4 nanorods, nanothorn microspheres, and hollow nanospheres as enhanced cathode materials of lithium ion battery. Journal of Physical Chemistry C, 2008, 112(31): 12051–12057.

    Google Scholar 

  127. Hosono E, Kudo T, Honma I, et al. Synthesis of single crystalline spinel LiMn2O4 nanowires for a lithium ion battery with high power density. Nano Letters, 2009, 9(3): 1045–1051.

    Google Scholar 

  128. Kim D K, Muralidharan P, Lee H W, et al. Spinel LiMn2O4 nanorods as lithium ion battery cathodes. Nano Letters, 2008, 8(11): 3948–3952.

    Google Scholar 

  129. Jiang C H, Dou S X, Liu H K, et al. Synthesis of spinel LiMn2O4 nanoparticles through one-step hydrothermal reaction. Journal of Power Sources, 2007, 172(1): 410–415.

    Google Scholar 

  130. Cho J, Kim Y J, Park B. Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell. Chemistry of Materials, 2000, 12(12): 3788–3791.

    Google Scholar 

  131. Cho J, Kim Y W, Kim B, et al. A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AIPO(4) nanoparticles. Angewandte Chemie-International Edition, 2003, 42(14): 1618–1621.

    MathSciNet  Google Scholar 

  132. Wang Q Y, Liu J, Murugan A V, et al. High capacity double-layer surface modified Li[Li0.2Mn0.54Ni0.13Co0.13]O-2 cathode with improved rate capability. Journal of Materials Chemistry, 2009, 19(28): 4965–4972.

    Google Scholar 

  133. Myung S T, Lee K S, Yoon C S, et al. Effect of AlF3 coating on rhermal behavior of chemically delithiated Li-0.35[Ni1/3Co1/3Mn1/3]O-2. Journal of Physical Chemistry C, 2010, 114(10): 4710–4718.

    Google Scholar 

  134. Sun Y K, Hong K J, Prakash J, et al. Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures. Electrochemistry Communications, 2002, 4(4): 344–348.

    Google Scholar 

  135. Cho J. VOx-coated LiMn2O4 nanorod clusters for lithium battery cathode materials. Journal of Materials Chemistry, 2008, 18(19): 2257–2261.

    Google Scholar 

  136. Chen Z H, Dahn J R. Reducing carbon in LiFePO4/C composite electrodes to maximize specific energy, volumetric energy, and tap density. Journal of the Electrochemical Society, 2002, 149(9): A1184–A1189.

    Google Scholar 

  137. Salah A A, Mauger A, Zaghib K, et al. Reduction Fe3+ of impurities in LiFePO4 from pyrolysis of organic precursor used for carbon deposition. Journal of the Electrochemical Society, 2006, 153(9): A1692–A1701.

    Google Scholar 

  138. Shin H C, Cho W I, Jang H. Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. Journal of Power Sources, 2006, 159(2): 1383–1388.

    Google Scholar 

  139. Yun N J, Ha H W, Jeong K H, et al. Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor. Journal of Power Sources, 2006, 160(2): 1361–1368.

    Google Scholar 

  140. Dominko R, Bele M, Goupil J M, et al. Wired porous cathode materials: A novel concept for synthesis of LiFePO4. Chemistry of Materials, 2007, 19(12): 2960–2969.

    Google Scholar 

  141. Zaghib K, Mauger A, Gendron F, et al. Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chemistry of Materials, 2008, 20(2): 462–469.

    Google Scholar 

  142. Roberts M R, Spong A D, Vitins G, et al. High throughput screening of the effect of carbon coating in LiFePO4 electrodes. Journal of the Electrochemical Society, 2007, 154(10): A921–A928.

    Google Scholar 

  143. Amine K, Liu J, Belharouak I. High-temperature storage and cycling of C-LiFePO4/graphite Li-ion cells. Electrochemistry Communications, 2005, 7(7): 669–673.

    Google Scholar 

  144. Gabrisch H, Wilcox J D, Doeff M M. Carbon surface layers on a high-rate LiFePO4. Electrochemical and Solid State Letters, 2006, 9(7): A360–A363.

    Google Scholar 

  145. Meethong N, Huang H Y S, Carter W C, et al. Size-dependent lithium miscibility gap in nanoscale Li1-xFePO4. Electrochemical and Solid State Letters, 2007, 10(5): A134–A138.

    Google Scholar 

  146. Delacourt C, Poizot P, Levasseur S, et al. Size effects on carbon-free LiFePO4 powders. Electrochemical and Solid State Letters, 2006, 9(7): A352–A355.

    Google Scholar 

  147. Choi D, Kumta P N. Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. Journal of Power Sources, 2007, 163(2): 1064–1069.

    Google Scholar 

  148. Ellis B, Kan W H, Makahnouk W R M, et al. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. Journal of Materials Chemistry, 2007, 17(30): 3248–3254.

    Google Scholar 

  149. Chen J J, Whittingham M S. Hydrothermal synthesis of lithium iron phosphate. Electrochemistry Communications, 2006, 8(5): 855–858.

    Google Scholar 

  150. Wang Y G, Wang Y R, Hosono E J, et al. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angewandte Chemie-International Edition, 2008, 47(39): 7461–7465.

    Google Scholar 

  151. Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature, 2009, 458(7235): 190–193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonggang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

He, P., Wang, Y. (2013). Nanostructured Electrode Materials for Lithium-ion Battery. In: Zhou, Y. (eds) Eco- and Renewable Energy Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33497-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33497-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33496-2

  • Online ISBN: 978-3-642-33497-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics