Skip to main content

Large Scale Spectral Clustering Using Resistance Distance and Spielman-Teng Solvers

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 7569))

Abstract

The promise of spectral clustering is that it can help detect complex shapes and intrinsic manifold structure in large and high dimensional spaces. The price for this promise is the computational cost O(n 3) for computing the eigen-decomposition of the graph Laplacian matrix - so far a necessary subroutine for spectral clustering. In this paper we bypass the eigen-decomposition of the original Laplacian matrix by leveraging the recently introduced Spielman and Teng near-linear time solver for systems of linear equations and random projection. Experiments on several synthetic and real datasets show that the proposed approach has better clustering quality and is faster than the state-of-the-art approximate spectral clustering methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achlioptas, D.: Database-friendly random projections. In: Proceedings of the 20th ACM Symposium on Principles of Database Systems, pp. 274–281. ACM, New York (2001)

    Google Scholar 

  2. Chen, W.Y., Song, Y., Bai, H., Lin, C.J., Chang, E.Y.: Parallel spectral clustering in distributed systems. IEEE TPAMI 33(3), 568–586 (2011)

    Article  Google Scholar 

  3. Chen, X., Cai, D.: Large scale spectral clustering with landmark-based representation. In: AAAI (2011)

    Google Scholar 

  4. Doyle, P.G., Snell, J.L.: Random Walks and Electric Networks. Mathematical Association of America, Washington, DC (1984)

    MATH  Google Scholar 

  5. Fouss, F., Renders, J.M.: Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation. IEEE TKDE 19(3), 355–369 (2007)

    Google Scholar 

  6. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the nyström method. IEEE TPAMI 26, 214–225 (2004)

    Article  Google Scholar 

  7. Frank, A., Asuncion, A.: UCI machine learning repository (2010)

    Google Scholar 

  8. Johnson, W., Lindenstrauss, J.: Extensions of Lipschitz mappings into a Hilbert space. In: Conference in Modern Analysis and Probability, Contemporary Mathematics, vol. 26, pp. 189–206. American Mathematical Society (1984)

    Google Scholar 

  9. Koutis, I., Miller, G.L., Tolliver, D.: Combinatorial Preconditioners and Multilevel Solvers for Problems in Computer Vision and Image Processing. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Kuno, Y., Wang, J., Wang, J.-X., Wang, J., Pajarola, R., Lindstrom, P., Hinkenjann, A., Encarnação, M.L., Silva, C.T., Coming, D. (eds.) ISVC 2009, Part I. LNCS, vol. 5875, pp. 1067–1078. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Luxburg, U.: A tutorial on spectral clustering. Statistics and Computing 17(4) (2007)

    Google Scholar 

  11. von Luxburg, U., Radl, A., Hein, M.: Getting lost in space: Large sample analysis of the resistance distance. In: NIPS, pp. 2622–2630 (2010)

    Google Scholar 

  12. von Luxburg, U., Bousquet, O., Belkin, M.: On the Convergence of Spectral Clustering on Random Samples: The Normalized Case. In: Shawe-Taylor, J., Singer, Y. (eds.) COLT 2004. LNCS (LNAI), vol. 3120, pp. 457–471. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Mavroeidis, D.: Accelerating spectral clustering with partial supervision. Data Min. Knowl. Discov. 21, 241–258 (2010)

    Article  MathSciNet  Google Scholar 

  14. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856. MIT Press (2001)

    Google Scholar 

  15. Qiu, H., Hancock, E.: Clustering and embedding using commute times. IEEE TPAMI 29(11), 1873–1890 (2007)

    Article  Google Scholar 

  16. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. In: Proceedings of the 40th Annual ACM STOC, pp. 563–568. ACM (2008)

    Google Scholar 

  17. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the 36th Annual ACM STOC, pp. 81–90. ACM, New York (2004)

    Google Scholar 

  18. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for preconditioning and solving symmetric, diagonally dominant linear systems. CoRR abs/cs/0607105 (2006)

    Google Scholar 

  19. Venkatasubramanian, S., Wang, Q.: The johnson-lindenstrauss transform: An empirical study. In: ALENEX 2011 (2011)

    Google Scholar 

  20. Wang, L., Leckie, C., Ramamohanarao, K., Bezdek, J.: Approximate Spectral Clustering. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.-B. (eds.) PAKDD 2009. LNCS, vol. 5476, pp. 134–146. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  21. Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: Proceedings of the 15th ACM SIGKDD, pp. 907–916 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Khoa, N.L.D., Chawla, S. (2012). Large Scale Spectral Clustering Using Resistance Distance and Spielman-Teng Solvers. In: Ganascia, JG., Lenca, P., Petit, JM. (eds) Discovery Science. DS 2012. Lecture Notes in Computer Science(), vol 7569. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-33492-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-33492-4_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-33491-7

  • Online ISBN: 978-3-642-33492-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics