Advertisement

A Framework for Evaluating Citizens’ Expectations and Satisfaction toward Continued Intention to Use E-Government Services

  • Mubarak Alruwaie
  • Ramzi El-Haddadeh
  • Vishanth Weerakkody
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7443)

Abstract

This paper examines the role of expectation and satisfaction in influencing citizens’ intention to continue using electronic government services. In order to investigate the key factors that affect an individual’s use of Information and Communication Technology within the context of electronic government, a framework combining Social Cognitive Theory and Expectation-Confirmation Theory is used to investigate satisfaction and continuity of use of e-government services. Further, the study incorporates DeLone and McLean’s IS success model along with the E-S-QUAL model to incorporate technical, organizational and Information Systems quality into this framework. The proposed framework will help in shaping further studies in cognitive, managerial and technical factors related to e-government adoption and use. This study argues that quality and consistency in e-government services affect the expectations and satisfaction of citizens, therefore impacting on its continuity of use.

Keywords

E-Government Use Continuity Expectation Satisfaction 

References

  1. 1.
    Heeks, R., Bailur, S.: Analyzing E-Government Research. Perspectives, philosophies, theories, methods, and practice. Government Information Quarterly 24(2), 243–265 (2007)CrossRefGoogle Scholar
  2. 2.
    Bandura, A.: Social Foundations of Thought and Action: A Social Cognitive Theory. Prentice-Hall, Englewood Cliffs (1986)Google Scholar
  3. 3.
    Bandura, A.: Social Cognitive Theory: An Agentic Perspective. Annual Review of Psychology 52(1), 1–26 (2001)CrossRefGoogle Scholar
  4. 4.
    Layne, K., Lee, J.W.: Developing Fully Functional E-government: A four stage model. Government Information Quarterly 18(2), 122–136 (2001)CrossRefGoogle Scholar
  5. 5.
    Carter, L., Weerakkody, V.: E-Government Adoption: A cultural comparison. Information Systems Frontiers 10(4), 473–482 (2008)CrossRefGoogle Scholar
  6. 6.
    Jasperson, J., Carter, P.E., Zmud, R.W.: A comprehensive conceptualization of post-adoptive behaviours associated with information technology enabled work systems. MIS Quarterly 29(3), 525–555 (2005)Google Scholar
  7. 7.
    Compeau, D.R., Higgins, C.A.: Computer self-efficacy: development of a measure and initial test. MIS Quarterly 19(2), 189–211 (1995b)CrossRefGoogle Scholar
  8. 8.
    Hsu, M.H., Chiu, C.M., Ju, T.L.: Determinants of continued use of the WWW: an integration of two theoretical models. Industrial Management & Data Systems 104(8-9), 766–775 (2004)CrossRefGoogle Scholar
  9. 9.
    Lim, E.T.K., Pan, S.L., Tan, C.W.: Managing user acceptance towards enterprise resource planning (ERP) systems - understanding the dissonance between user expectations and managerial policies. European Journal of Information Systems 14(2), 135–149 (2005)CrossRefGoogle Scholar
  10. 10.
    Gilbert, D., Balestrini, P.: Barriers and benefits in the adoption of e-government. The International Journal of Public Sector Management 17(4), 286–301 (2004)CrossRefGoogle Scholar
  11. 11.
    Coiera, E.: Interaction design theory. International Journal of Medical Informatics 69(2-3), 205–222 (2003)CrossRefGoogle Scholar
  12. 12.
    Brown, S.A., Massey, A.P., Montoya-Weiss, M.M., Burkman, J.R.: Do I really have to? User acceptance of mandated technology. European Journal of Information System 11(4), 283–295 (2002)CrossRefGoogle Scholar
  13. 13.
    Brown, S.A., Venkatesh, V., Kuruzovich, J., Massey, A.P.: Expectation confirmation: An examination of three competing models. Organizational Behavior and Human Decision Processes 105(1), 52–66 (2008)CrossRefGoogle Scholar
  14. 14.
    Chan, F.K.Y., Thong, J.Y.L., Venkatesh, V., Brown, S.A., Hu, P.J.H., Tam, K.Y.: Modeling Citizen Satisfaction with Mandatory Adoption of an E-Government Technology. Journal of the Association for Information Systems 11(10), 519–549 (2010)Google Scholar
  15. 15.
    Venkatesh, V., Thong, J.Y.L., Chan, F.K.Y., Hu, P.J., Brown, S.A.: Extending the two-stage information systems continuance model: incorporating UTAUT predictors and the role of context. Information Systems Journal 21, 527–555 (2011)CrossRefGoogle Scholar
  16. 16.
    DeLone, W.H., McLean, E.R.: The DeLone and McLean Model of Information Systems Success: A Ten-Year Update. Journal of Management Information Systems 19(4), 9–30 (2003)Google Scholar
  17. 17.
    Chircu, A.M., Lee, D.H.-D.: E-government: Key Success Factors for Value Discovery and Realisation. E-Government, an International Journal 2(1), 11–25 (2005)CrossRefGoogle Scholar
  18. 18.
    Dwivedi, Y., Irani, Z.: Understanding the Adopters and Non-adopters of Broadband. Communications of the ACM 52(1), 122–125 (2009)CrossRefGoogle Scholar
  19. 19.
    Venkatesh, V., Morris, M., Davis, G., Davis, F.: User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly 27(3), 425–478 (2003)Google Scholar
  20. 20.
    Bandura, A.: Self-efficacy: Toward a unifying theory of behavioural change. Psychological Review 84, 191–215 (1977)CrossRefGoogle Scholar
  21. 21.
    Bandura, A.: Reflections on Self-efficacy. Advanced in Behavioural Research and Therapy 1, 237–269 (1978)CrossRefGoogle Scholar
  22. 22.
    Bandura, A.: Self-efficacy mechanism in human agency. American Psychology 372, 122–147 (1982)CrossRefGoogle Scholar
  23. 23.
    Zeithaml, V.A.: Consumer perceptions of price, quality, and value: a means end model and synthesis of evidence. Journal of Marketing 52(3), 2–22 (1988)CrossRefGoogle Scholar
  24. 24.
    Bhattacherjee, A.: Understanding information systems continuance: an expectation confirmation model. MIS Quarterly 25(3), 351–370 (2001a)CrossRefGoogle Scholar
  25. 25.
    Hung, S.Y., Chang, C.M., Yu, T.J.: Determinants of user acceptance of the e-government services: the case of online tax filing and payment system. Government Information Quarterly 23(1), 97–122 (2006)CrossRefGoogle Scholar
  26. 26.
    Zhang, P., von Dran, G.M.: Satisfiers and dissatisfiers: A two-factor model for Web site design and evaluation. Journal of the American Society for Information Science 51(14), 1253–1268 (2000)CrossRefGoogle Scholar
  27. 27.
    West, D.M.: E-Government and the transformation of service delivery and citizen attitudes. Public Administration Review 64(1), 15–27 (2004)CrossRefGoogle Scholar
  28. 28.
    Moon, M.J.: The Evolution of E-Government among Municipalities: Rhetoric or Reality? Public Administration Review 62(4), 424–433 (2002)CrossRefGoogle Scholar
  29. 29.
    Shneiderman, B.: Universal usability. Communications of the ACM 43(5), 85–91 (2000)CrossRefGoogle Scholar
  30. 30.
    Zahedi, M.F., van Pelt, W.V., Song, J.: A conceptual framework for international Web design. IEEE Transactions on Professional Communication 44(2), 83–103 (2001)CrossRefGoogle Scholar
  31. 31.
    Kotler, P., Wong, V., Saunders, J., Armstrong, A.: Principles of Marketing, 4th edn. Pearson Education, England (2005)Google Scholar
  32. 32.
    Reffat, R.: Developing A Successful E-Government, Working Paper, School Of Architecture. Design Science And Planning. University of Sydney, Australia (2003)Google Scholar
  33. 33.
    Rogers, E.M.: Diffusion of Innovations, 4th edn. The Free Press, New York (1995)Google Scholar
  34. 34.
    Davis, F.D.: Percieved usefulness, perceived ease of use and user acceptance of information technology 2. MIS Quarterly 13(3), 318–339 (1989)CrossRefGoogle Scholar
  35. 35.
    Ajzen, I., Fishbein, M.: Attitude-Behavior Relations: A Theoretical Analysis and Review of Empirical Research. Psychological Bulletin 84, 888–918 (1977)CrossRefGoogle Scholar
  36. 36.
    Moore, G., Benbasat, I.: Development of an instrument to measure the perceptions ofadopting an information technology innovation. Information Systems Research 2, 192–222 (1991)CrossRefGoogle Scholar
  37. 37.
    Malhotra, Y., Galletta, D.F.: Extending the technology acceptance model to account for social influence: theoretical bases and empirical validation. Paper Presented at the 32nd Annual Hawaii International Conference on System Sciences, Hawaii (1999)Google Scholar
  38. 38.
    Venkatesh, V., Davis, F.D.: A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studie. Management Science 46(2), 186–205 (2000)CrossRefGoogle Scholar
  39. 39.
    Venkatesh, V., Morris, M.G.: Why don’t men ever stop to ask for directions? Gender, social influence, and their role in technology acceptance and usage behaviour. MISQuarterly 24(1), 115–139 (2000)Google Scholar
  40. 40.
    Lee, Y., Lee, J., Lee, K.: Social influence on technology acceptance behavior:self-identity theory perspective. The Database for Advances in Information Systems 37(2&3), 60–75 (2006)CrossRefGoogle Scholar
  41. 41.
    Fishbein, M., Ajzen, I.: Belief, Attitude, Intention and Behaviour: An Introduction to Theory and Research. Addison-Wesley, Reading (1975)Google Scholar
  42. 42.
    Parasuraman, A., Zeithaml, V.A., Malhotra, A.: E-SQUAL: multiple-item scale for assessing electronic service quality. Journal of Service Research 7(3), 213–234 (2005)CrossRefGoogle Scholar
  43. 43.
    Venkatesh, V., Davis, F.D., Morris, M.G.: Dead or alive? The development, trajectory and future of technology adoption research. Journal of the Association for Information Systems 8(4), 267–286 (2007)Google Scholar
  44. 44.
    Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User acceptance of computer technology: A comparison of two theoretical models. Management Science 35(8), 982–1003 (1989)CrossRefGoogle Scholar
  45. 45.
    Taylor, S., Todd, P.A., Assessing, I.T.: Usage: The Role of Prior Experience. MIS Quarterly 19(4), 561–570 (1995a)CrossRefGoogle Scholar
  46. 46.
    Taylor, S., Todd, P.A.: Understanding Information Technology Usage: A Test of Competing Models. Information Systems Research 6(2), 144–176 (1995b)CrossRefGoogle Scholar
  47. 47.
    Bhattacherjee, A., Premkumar, G.: Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test. MIS Quarterly 28(2), 229–254 (2004)Google Scholar
  48. 48.
    Bhattacherjee, A.: An empirical analysis of the antecedents of electronic commerce service continuance. Decision Support Systems 32(2), 201–214 (2001b)CrossRefGoogle Scholar
  49. 49.
    Hung, M.-C., Chang, I., Hwang, H.: Exploring academic teachers’ continuance toward the web-based learning systems: The role of casual attributions. Computer & Education 57(2), 1530–1543 (2011)CrossRefGoogle Scholar
  50. 50.
    Oliver, R.L.: A Cognitive Model for the Antecedents and Consequences of Satisfaction. Journal of Marketing Research 17, 460–469 (1980)CrossRefGoogle Scholar
  51. 51.
    Anderson, E.W., Sullivan, M.W.: The antecedents and consequences of customer satisfaction for firms. Marketing Science 12(2), 125–143 (1993)CrossRefGoogle Scholar
  52. 52.
    Compeau, D.R., Higgins, C.A.: Application of social cognitive theory for computer skills. Information Systems Research 6(2), 118–143 (1995a)CrossRefGoogle Scholar
  53. 53.
    Johnson, R.D., Marakas, G.M.: Research report: The role of behavioral modelling in computer skills acquisition - Toward refinement of the model. Information Systems Research 11(4), 402–417 (2000)CrossRefGoogle Scholar
  54. 54.
    Verdegem, P., Stragier, J., Verleye, G.: Measuring for Knowledge: A Data-Driven Research Approach for eGovernment. In: Proceedings of the 10th European Conference on E-government, pp. 417–424 (2010)Google Scholar
  55. 55.
    Scholl, R.W.: Differentiating organizational commitment from expectancy as a motivating force. Academy of Management Review 6(4), 589–599 (1981)Google Scholar
  56. 56.
    Wasko, M.M., Faraj, S.: Why should I share? Examining social capital and knowledge contribution in electronic networks of practice. MIS Quarterly 29(1), 35–57 (2005)Google Scholar
  57. 57.
    Carter, L., Bélanger, F.: The utilization of e-government services: citizen trust,innovation and acceptance factors. Information Systems Journal 15(1), 5–25 (2005)CrossRefGoogle Scholar
  58. 58.
    Rogers, E.M.: Diffusion of Innovations, 3rd edn. The Free Press, New York (1983)Google Scholar
  59. 59.
    Zeithaml, V.A., Berry, L.L., Parasuraman, A.: The behavioural consequences of service quality. Journal of Marketing 60(2), 31–46 (1996)CrossRefGoogle Scholar
  60. 60.
    Parasuraman, S., Zeithaml, V.A., Berry, L.L.: SERVQUAL: a multiple-item scale for measuring consumer perceptions of service quality. Journal of Retailing 64(1), 12–40 (1988)Google Scholar
  61. 61.
    DeLone, W.H., McLean, E.R.: Information system success: The quest for dependent variable. Information Systems Research 3(1), 60–95 (1992)CrossRefGoogle Scholar
  62. 62.
    Parasuraman, S., Zeithaml, V.A., Berry, L.L.: A Conceptual Model of Service Quality and Its Implications for Future Research. Journal of Marketing 49, 41–50 (1985)CrossRefGoogle Scholar
  63. 63.
    Bandura, A.: Social cognitive theory of mass communication. In: Bryant, J., Oliver, M.B. (eds.) Media Effects: Advances in Theory and Research, 2nd edn., Mahwah, NJ, pp. 94–124 (2009)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2012

Authors and Affiliations

  • Mubarak Alruwaie
    • 1
  • Ramzi El-Haddadeh
    • 1
  • Vishanth Weerakkody
    • 1
  1. 1.Brunel Business SchoolBrunel UniversityUxbridgeUnited Kingdom (UK)

Personalised recommendations